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A generalized first-order shear deformation theory for anisotropic multilayered shells is presented. It includes the
effects of geometrically nonlinear deformations and general initial curvature. The field equations are expressed in
orthogonal conjugate curvilinear coordinates in the shell’s middle surface. Hence, this formulation is particularly
suitable for the analysis of monocoque structures formed using the increasingly exploited fiber-placement
manufacturing techniques. A novel expression for the stiffness matrix is presented in which the relationship between
the shell shape and the stiffness coefficients is highlighted. It is also shown that the stiffnesses herein obtained may
lead to significantly different deformation fields from those based upon flat-plate expressions.

Nomenclature
AL A, = Lamé coefficients
A;j, Bij, Dy = stiffness matrix coefficients
A, By, Ay, Ty = stiffness matrix coefficients
a, a = scale factors
E. F,G = surface metric tensor elements
E;. Z;, Hy; = stiffness matrix coefficients
ey, €n = linear elongation of those line elements

having (before deformation) directions
coincident with the coordinate directions

€12, €13, €23 = linear shear deformations between those line
elements having (before deformation)
directions coincident with the coordinate
directions

Iy, 1, I, = mass inertias

K, = shear correction factor

Nij» Mj;, Qy; = stress resultants per unit length

Qi = transformed stiffnesses referred to the
laminate coordinate directions

R = position vector of an arbitrary point

R, R, = normal radii of curvature of the middle
surface

r = position vector of a point on the middle
surface

u, v, w = displacements

U, Vg, Wy = displacements of the middle surface of the
shell

8K = virtual variation of the kinematic energy

U = virtual variation of the strain energy

% = virtual variation of the potential of the
applied forces

& = nonlinear strain components

&11> €2 = nonlinear elongation of those line elements

having (before deformation) directions
coincident with the coordinates directions
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€12, €135 €23 = nonlinear shear deformations (change of
angles) between those line elements having
(before deformation) directions coincident
with the coordinate directions

£,6.¢C orthogonal curvilinear coordinates

o; = stress components

o1, b = rotations of a normal to reference surface

Wy, Wy, W3 = components of the curl of the displacement

field

I. Introduction

NE of the most remarkable features of composite materials is

their versatility that allows engineers to design not only a
structure but also its constituent material. Partly due to their excellent
specific stiffness, there is often the tendency to use them to replicate
the well-known behavior of isotropic materials, thus missing the
opportunity to exploit many of the benefits that composites could
provide.

It is becoming increasingly important for novel applications to
exploit the capabilities that composite laminates offer by either
increasing structural efficiency or by creating novel functionality.
For instance, parts made from unsymmetric stacking sequences have
been rarely used, because they may introduce several structural
couplings and because they may develop internal stresses and warp
when cooling down from cure to room temperature. Nonetheless,
these or similar phenomena offer great capabilities for novel
concepts to be used in emerging research fields such as elastic
tailoring and morphing structures [1].

To exploit these capabilities it is crucially important to fully
understand the structural behavior of the materials and to examine all
sources of anisotropy. The aim of this paper is to gather the
understanding necessary to design materials and to obtain tailored
structural responses of general shells. Particular attention is given to
the relationship between curvatures and stiffness coefficients.

Shell structures have been widely used in engineering
applications. The literature offers a variety of theories for both
general elasticity problems and particular design purposes. Each
theory or analysis has been developed starting from a common point:
namely, the differential equations of elastic equilibrium. However,
they may differ greatly, depending on the different purpose-driven
assumptions and approximations used. Furthermore, despite the
availability of a huge variety of papers dedicated to the study of most
shell-related structural phenomena, literature almost exclusively
applies to the analysis of shells of practical and common use in
engineering. Therefore, most published work has been concerned
specifically with simple shapes such as cylinders, spheres, cones, or,
more generally, shells having small ratios of thickness to radius of


http://dx.doi.org/10.2514/1.41538

768 PIRRERA AND WEAVER

curvature. Under this assumption, the effect of the curvature on
stiffnesses is often negligible [2].

Comprehensive literature reviews on the mechanics of laminated
anisotropic shells can be found in recent papers by Qatu [2] and
Toorani and Lakis [3]. Survey articles often emphasize that shear
deformations and rotary inertia effects are generally more important
for composites than for isotropic materials. Interestingly, Qatu [4,5]
showed that neglecting the geometric terms 1 + {/R;, in addition to
leading to stress resultants that contradict the equations of
equilibrium [6], may entail errors of the same order of magnitude as
those introduced by Kirchhoff-Love’s first approximation.
Furthermore, independently and with a different approach, Voyiadjis
and Shi [7] and Voyiadjis and Woelke [8] showed, with their work on
isotropic shells, that curvature has a significant effect on shell
elasticity. They found that the effect of initial curvature on stress
resultants and couples is, in general, not negligible. In the present
formulation, the term 1 + {/R; is integrated exactly. It will be shown
that this procedure provides precise relationships between the
stiffness coefficients and shell curvatures and, notably, the influence
that these relationships has on both linear and nonlinear structural
phenomena.

For all of the aforementioned reasons, the current work attempts to
develop a novel model describing shell-like two-dimensional
structures. A first-order shear deformation theory (FSDT) for
anisotropic, multilayered, deep, and thick shells is presented. It is
based on work by Reddy [9,10] for thin, doubly curved, shallow
shells. It is the current aim to further develop that work to shells of
general shape by following Qatu’s [4,5] recommendations and
including the effects of geometrically nonlinear deformations, as
described by Novozhilov [11,12].

In an attempt to be as general as possible, the model takes into
account full anisotropy, general shell geometry, and nonlinear and
transverse shear deformations. Inconsistencies that were common in
many of the past theories have been considered and overcome

The field equations are expressed in curvilinear coordinates lying
on the shell’s middle surface. For the sake of simplicity, this net is
taken to be coincident with the surfaces’ principal curves (sometimes
called lines of curvature). A novel expression for the stiffness matrix
is presented. Itis also shown that many of the stiffness coupling terms
and the strain components are strongly dependent on the shape of the
structure.

Finally, it is noted that there have been a great number of technical
papers on the theory of shells in the last century. Those of particular
interest, which are in addition to those already mentioned, are
detailed in [16—40].

II. Theoretical Development

In the following sections, the theoretical development leading
from the governing field equations to the analytical solution (namely,
the load-displacement equations for shell structures) are presented.

The usual assumptions are followed:

1) There is linear elastic behavior of the material.

2) The transverse normal fibers are not elongated.

3) The normal stress in the thickness direction is negligible
compared with other stresses in the same direction.

4) The Kirchhoff-Love hypothesis is relaxed, and so those
elemental fibers that were straight and normal to the middle plane
before deformation remain straight but are no longer normal to that
plane after deformation.

A. Geometry of Curved Surfaces

The previous assumptions allow the mechanics of the shell to be
described as a two-dimensional problem. The structural behavior of
the generic shell is then reduced to a function of its middle surface. It
is assumed that the middle surface of the shell structure is described
by the curvilinear coordinate system (&, &, ¢) [10], where &, and &,
are coordinates describing the position on the middle surface, and ¢ is
the coordinate in the thickness direction. This being the case, points

on the middle surface and in an arbitrary position are described,
respectively, by vectors r = r(§,, &,,0) and R = R (&}, &,,0).

The metric properties of a surface are completely described by the
first fundamental form. It determines the length of an element of
middle surface as

ds® = dr - dr = Ed€ + 2Fd§, d§, + Gd&? )

The coefficients in Eq. (1) represent the elements of the surface
metric tensor and are defined as

or or Jr Or or or

0k 0&° 0 0&° 08, 08,

In curvilinear coordinate systems, the quantities a; = +/E and
a, = +/G represent the length of the vectors tangent to curves of
constant &, and &, and are called scale factors, and F is proportional to
the angle y between the tangent vectors and is equal to a;a, cos x.
Similarly, A; and A,, the so-called Lamé coefficients, have
analogous meanings for points through the thickness. Provided that
R, and R, denote the normal radii of curvature of the middle surface,

then
Alzal(l—i-Ril), Azzaz(l—i—R%) 3)

The first fundamental form defines a family of surfaces with the same
metric. The surface itself is fully determined by also considering the
coefficients of the second fundamental form. These coefficients are
related to the surface curvature and are defined as

(@)

9*r *r *r

L=—"-n, M=—F—--n, =—-n
08} 95,08, 083

(C)]

where n is the unit vector normal to the middle surface and is defined

as
a9
n = (a—;xa—é)/alaz 5)

For the sake of simplicity, in the following formulation, the
elasticity equations will be expressed in the curvilinear coordinates
system defined by the surface’s principal curves (i.e., curves for
which the tangent is always coincident with one of the principal
directions). It is then assumed that the coordinate lines are both
orthogonal (F =0) and conjugate (M = 0). This can be done
without losing generality. Although the coefficients of the
fundamental forms depend on the surface parametric definition
that is adopted, finding a coordinate transformation to fulfill the
preceding requirements (i.e., F =M = 0) is not a trivial matter.
However, in the theory of surfaces, it has been proved that every
surface can be referred to its principal lines and that they are uniquely
determined (see [4,6,16] for further details).

Here, a common analytical method to find principal curves is
briefly described. It exploits the concept of the velocity vector of a
curve. Let x be a surface defined in R and let ae(f) = x(f(¢), g()) be
a curve lying on it. Then « is a principal curve if and only if the
following differential equation [16] holds:

df\? df dg
(ME—LF)(E) +(NE—LG)EE
dg\*
+(NF—MG)(E) =0 (6)

In fact, note that for certain surfaces, there is a more convenient
method to find principal curves based on the notion of a triply
orthogonal system of surfaces [16].

B. Strain-Displacement Relations

The nonlinear strains, under the hypothesis of small relative
deformations, are defined in curvilinear coordinates [11] as
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en = ey + e} + Gen + w3)? + Geps — @)
£ = ey +3[e3; + Gen — 03)* + (bexs + @)’
e = e + ey (Gey — w3) + en(Gery + w3)
+ (Geis — @) (Gexs + @)
ez =e;+enGes + o) + Gepn + 03) (e — o))

23 = ex3 + en(3er — @) + (Je1, — @3)(e3 + w,) @)

The expressions in Egs. (7) are a nonlinear combination of those
elements that fully describe continuum deformations under the
hypothesis of small displacements and rotations: that is, in the
classical linear theory of elasticity (in which ¢;; ~ e;;). It is shown in
several works [2-15] that linear deformations in orthogonal
curvilinear coordinates are described using the relationships

o (B L ) L (e L)
A\, A23§2 08 a, 0§,

L fov 1 3A2 A\ dv 1 da,
oo ram ) ~n (@ ram )
)

PA 0 A, 06, \A
_L(Bv_iaal )+_(8u _iaaz )
A \&  a, 08, A \0&,  a, 0§,
Aﬁ(i)_{_law Bu 1 (La_w_i)
Yac\a,) Taves g " ad& R
823:L3_w+A23(1):@+;(L3_w_i)
A, 08, C\A, ¢ l-f-Ri2 a0, R,
ow ov 1 1ow v
0= [~ ap0 | =+ (a_za_sz‘R_z)

1 du 1 10w u
20,2 [ = e (Za—sl‘R—l)

1
2wy = AA |:3§] (Ayv) — 95, (Alu)]
7(8v_i8a, )_7(87u_i3a2 ) ®)
A \0&  a, 08, A \0&,  a; 3§,

According to the hypothesis described at the beginning of Sec. 11,
the surface displacements u, v and w are assumed to be

u(€1.6.6,0 =ug(51,5, 0 + §1(51, 6. 1)
v(sl ’ EZ’ é‘v t) = vO(Sl ’ 529 t) + §¢2('§] ’ %-27 t) (9)
w(éli EZﬁ é" l) = wO(El? EZﬁ l)

Substituting Egs. (9) into Eqgs. (8) enables the linear strains to be
separated into terms (or components) depending on displacements
and rotations of the middle surface:

ou vy 0a a
0 _ 0 0 Y%t 1
+— —|— w
(asl a, 9 )
1 [ov uy da a
0 0 0 9dy 2
=— (et et
a (852 a 351 0)
wo_i(%_ﬁaal) W) — (8u0_ﬂaa2)
! a; \0&, a, 9§, i 0& a0,

ow
= (3520 T ad g, ”°)

Q

x
[}

®  a 352 3‘52 a 351
o) ol
I — _ 72
Ky =-2 X I(z +2-— 1 (10)

where superscripts 0 and 1 refer to in-surface and out-of-surface
components of linear deformations, respectively. Substituting
Egs. (10) into Egs. (7), the following expressions for nonlinear
strains are obtained:

)+ e 1
UTTEYR, 21+ /R
x[(e?+ce1)2+<w?+cw{>2 L cm]
_eg+§ei 1
2T g/R, 21+ R
[ (€ 8eD 0+ Sl 4 e+ +
ol o+l !
PTI4/R 1L+ /R, T (L+E/R)(+E/R,y)
x | (e + CeD) (@) + Cwy) + (€3 + Led) (@) + o))
+ 3= — G+ + 0 |
e 8 1[<e?+§e%)(e2+x8+€x5)
P14 ¢/R, (1+¢/R)?
+(a)1—|—§'a)l)(e4—lcl §K1)i|
(1+¢/R)(1 +/Ry)
B 62 |:(€z+§ez)(e4_’(1 EKI)
2714 YR, (1+¢/Ry)?
(@) + ¢w2>(e5+x2+zx5>] an
(1+¢/R)(1+E/Ry)

Equation (7) or Eq. (11) are generally valid for small relative
deformations, but in some practical problems, this level of accuracy
might be not necessary. Simplified expressions (even though less
general) can be found in [11] under the hypothesis of small rotations
or in [10] with von Kdrmdn nonlinearities. The proposed model can
be simplified accordingly.

C. Stress Resultants

The stress resultants acting on the shell element are obtained by
integrating each stress over the thickness [10] as
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Ny o]
Ny, 52 ¢ O¢
O =/ (1 +R_) osK, ¢d¢
My, —h/2 2 {o
My, {og
(12)
Ny, 03
Ny h/2 é- 06
()33 =/ (1 R7) oK, ¢d¢
M, —h/2 ! {o,
My, Lo

where K is the shear correction factor used to adjust the discrepancy
between the true variation of the transverse shear and that which has
been imposed.

The definition of the stress resultants is a key feature of the present
formulation and merits further discussion. In many shallow thin shell
theories, the term 1 + {/R;, which is due to the integration over the
thickness of a curved section, has been ignored and the stiffness
coefficients have been calculated as for flat plates {henceforth, we
will refer to this as plate approximation (P.A.) [4]}. This led to fairly
good results, even though it was clear that the artificially achieved
symmetry of the resultants M;; = M;; and N;; = N;; contradicts
drilling equilibrium [6]. This inconsistency was often overcome by
expanding the term in a geometric series, thus restoring the
relationship

13)

which derives from the exact definition of resultants and identically
satisfies one of the equilibrium equations. Alternatively, some
researchers including the effects of 1 + ¢/R; suggested the use of
modified stress resultants to ensure symmetry [13—15,17].

As already established, transverse shear deformations may have a
significant role in the mechanics of thick laminated composite
structures, and their effects may need to be included in the analysis of
shells. According to [4], the error introduced by neglecting them is of
the same order of magnitude as that created by approximating
1 4 ¢/R; to unity.

For consistency purposes, the integration of Eqs. (12) has to then
be carried out exactly. By so doing, we will find that curvatures are a
source of anisotropy (coupling between membrane and flexural
effects), even for isotropic materials, and that the stiffness
coefficients are not constants, as when calculated with the flat-plate
approximation, but functions of the curvatures. Reference [4] also
shows that the results of the study of linear phenomena using exact
stiffness coefficients are generally more accurate when compared
with those of FSDT or even higher-order shear deformation theory.
This degree of accuracy is due to the different way in which the
stiffness matrix is calculated. It will be shown here that this
difference will lead to appreciably different values of strain
components. It is thus argued that maintaining the accurate
expression of the stresses resultant will affect nonlinear effects such
as buckling or postbuckling phenomena.

D. Constitutive Relations

Suppose that the shell structure is composed of N layers. For each
layer, the constitutive law is

0| On Qi 0 0 Qg &)tk &\ Nt
o} On O0n 0 0 O & &
o, =1 0 0 Qu Qs O &y ¢ T4 &
Os 0 0 Qs Oss O &s €s
06 O O 0 0 O &6 &6

(14)

For convenience, in Eq. (14), the strain vector is split in two parts in
which the superscripts L and NL mean linear and nonlinear,

respectively. Similarly, the stress resultants are presented as a sum of
two vectors corresponding to distributed forces and moments
resulting from linear and nonlinear strains so that, for example, N,
will be the sum of N¥, and N}

By means of Eqgs. (7), one can write

L

&1 en
& €2
&4 =14 €3 (15)
&s €3
&6 €12

NL
&1

&
&4
s
€6

et + Gern + @3)* + Geys — )]
%[e%z + (%612 —w3)’ + (%923 + ,)?]
= enern — ) + (Ge, — w3)Gers + wy)
911(%913 + ;) + (%912 + 0)3)(%923 —wy)
e11(en — w3) + epnery + w3) + (Ges — wy)(Gess + w))

16)

Substituting Eq. (14) back into Eqs. (12) and integrating the
resulting expressions, it is then possible to obtain the laminate
constitutive relations reported in Egs. (17-19) and (26-28).

E. Laminate Stiffness Matrix Corresponding to Linear Strains
The constitutive equations are

Ny ’ Ay Al A Ag e?
Ny, _ Al Ay Ay Ags o
Ny, - Ap Ay Ap Al e
Ny A Ag Ay Aggd | o

+ (17)

M, By, Bis B B e?
My | | Bis Bes B Bes of
My [ | B By By By e
M, Bis Bgs By, Bgg 3

+ 18)

19)
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or, in a more compact form,

x (20)

The elements of Eqs. (17-20), which are due to the linear part of
the strain components, are calculated using

Ay Al A Ay

Al A Ax Acs

Ap Ay An A

A Ass A Ags

azLe,Qll azLe,Qm CLle CLQlo ®
a1Le,Q16 alk,Qeo CLQ% CLQ66
k=1 CLle CLQm akzézz a:Lezézo

ct0y O alLezQz() alLezQﬁs

@n

B=
By By By B
Bis Bgs By B
bﬁlén sze,Qm d“*Qp  d"Q,5 |V
:i bkl_ém bﬁ,_Qes dLQ_ze dLQ_“ 22)
o | d"0n d"Qi bk, 0 bk, 05
d*Qy  d" Qg szeZQ% szeZQ%
Dy Dig Dy Dig
D= Dis Digs Di Des
N Dy Dy Dy Dig
Dis D¢ D3 Dgg
eﬁlén eﬁlém fro., fLQm ®
zi eéléw e§1?—66 fLQ_26 fLQ_66 23)
=1 | "0 O eﬁzsz 31Le2Q26
fF0x% Qs eﬁzézﬁ eﬁzésﬁ
[AM A45]= S [a,%z_QM cLQ_45T"’ o
Ais Ass | = | tQus  ag Oss
and
o = | G =80+ = R ()

blﬁl = % B G =)+ (R —R)(Gi — &)

B o (Rt G
a5

1
ck = (§k+1 =0 dt = §(§1%+1 - é%)

R, |1 1
ch =[5 €~ + 5= RO, 8

—Ri(Ry = R)(Gy1 — &) + RI(Ry — Ry) bn (Rllel_{——-i—;z:l)]

1
ff=3G =5 25)

Similar coefficients with R, as subscript can be obtained by simply
interchanging subscripts 1 and 2. Note that symmetry has been
achieved by decomposing shear strains into two separate
components. Splitting shear strain into two constituent parts allows
distinct components for N,, N,;, M,,, and M,, to be retained while
allowing both physically meaningful stress components and
symmetry for our problem, noting that symmetry is retained via two
4 x 4 stiffness matrices rather than the conventional 3 x 3. As such,
our formulation is an alternative to that shown in [13-15,17].

F. Laminate Stiffness Matrix Corresponding to Nonlinear Strains

Similarly, it is possible to obtain the part of the constitutive
equations due to the nonlinear strains:
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III. Equations of Motion

The following six equations of equilibrium are widely accepted
[2-15]. They reflect the equilibrium of the middle surface when a
transverse load ¢ is applied, and they are
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The mass inertias I, /;, and I, are calculated using

- 0 A
li= Z/h/z ( )(1+R2 ¢de (i=0,1,2) (38)

where p is the mass density.

Because of the definition of the stress resultants, the last
expression in Eq. (37), concerning drilling equilibrium, is identically
satisfied and, for this reason, is usually not considered in deriving the
differential equations relating displacements and applied loads. It is
noted that drilling equilibrium is always satisfied unless the flat-plate
approximation is assumed in the definition of the stress resultants. In
fact, in many previous theories in which the term 1+ /R; is
approximated to unity, the definition of stress resultants does not
satisfy the sixth equilibrium equation.

In deriving the stress resultants, approximate expressions for the
displacement field have been used. It has been demonstrated that this
discrepancy leads to nonzero strain components (note, not strains)
and stress resultants corresponding to a small rigid-body rotation and
that Eq. (20) is thus in need of some modification [9,10,13,14].
Analytically, this is done by modifying the strain-displacement
relations in Eq. (20) by replacing those terms without tildes using the
following terms with tildes:

d d
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Here, the term ¢, is the third component of the curl of the shell’s
middle-surface displacement field; hence,

1
2a1a2

0 0
o, = |:8§ (ayvg) — 8&'2 (aluo)] (40)

The same correction does not apply to Eqgs. (26-28). This reasoning
is understood by considering the work of Sanders [13], in which he
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imposed the displacement field, generated by a small rigid rotation,
on the structure. Because he was dealing with a linear theory and
small displacements, he could approximate the small rigid rotation
with a curl. In linear theories, this must result in zero strain
components, and thus the correction. In nonlinear theories, a curl
cannot be approximated to a rigid rotation. It actually entails some
deformations, and these deformations are analytically described by
the nonlinear strains in Eq. (16). The physical meaning of the latter
equation would be altered by applying the curl correction to
Egs. (26-28).

IV. Numerical Results

One of the features on the present work is that the term 1 4+ {/R;
has been retained in the derivation of the shell model. This term is
typically neglected because, for the range of applicability of any shell
theory based on an approximation of the shell as a two-dimensional
structure, the quantity {/R; is small if compared with unity.

In the following sections, examples of application of the
developed theory are presented. The expressions of the stiffnesses
are presented as functions of the geometry of the shell in its
orthogonal conjugate curvilinear system (i.e., of the normal radii of
curvature). These functions therefore represent a point-to-point
mapping between the structure’s idealized domain and stiffness. In
other words, they allow one to analytically calculate the exact
stiffnesses of a differential element within a structure.

It is later shown that even when the approximation {/R; < 1
holds correctly, neglecting this term entails the loss of important
information. Indeed, the geometry of a shell structure can affect the
stiffness matrix by introducing coupling terms for even symmetric
laminates or isotropic materials. This effect is readily explained by
simplifying the expressions in Eq. (25). For instance, consider a
generic shell of thickness / and assume that the material is isotropic.
A series expansion of Eqgs. (25) yields the following relationships:

1R (1 1
L ~ L ~p "~ - _
R 7 R, 12R, (Rz Rl)

Equations (41) give an idea of the order of magnitude of the
difference between classic lamination theory stiffnesses and those
herein presented, and they also show that this difference depends on
thickness, radii of curvature. and the sign of their product R;R,. By
comparing the latter expressions with the classic case (P.A.) in which

L L
ag, ~ ag, ~h,

b, ~ b, ~0, eq ~ep ~h (42)
it becomes clear that, with the notable exception of the sphere, there
is a small nonuniform relative difference for the A;; and D;; terms and
that the same difference, which is magnified for structures in which
R\R, <0,is larger in B;; terms. Indeed, the latter differ from zero by
the order of D;;/R;. For composite structures, these differences are
then expected to be of the same order of magnitude as those obtained
using Eqgs. (41) and (42).

The bending-stretching matrix is nonzero, even for symmetrically
laminated structures, due to the inherent geometry. An important
general rule may be deduced from the expressions in Eqs. (41): that
is, the effect of the initial geometry on the elastic behavior of a curved
surface depends on its Gaussian curvature (GC). This quantity is
defined as the product of the principal curvatures and it is positive for
synclastic surfaces (e.g., elliptic paraboloids), zero for developable
or ruled surfaces (e.g., cylinders or cones) and negative for anticlastic
surfaces (e.g., hyperbolic paraboloids). For structures with different
geometries and identical thicknesses and lamination, the magnitude
of the elements of the bending-stretching matrix increases for
decreasing GC. In summary, from Eq. (41),

GC>0= B;

2

3 3
@(h__h_)
IR
h3
O(m) @
2
n n
0 _+_)
(|R2| IR,|

Interestingly, the significance of the B;; terms depends only on
geometry, via GC, and not on material stiffness properties. As such,
the effect of curvature on B;; is completely captured by GC, noting
that the largest effects occur for anticlastic geometries, such as the
hyperbolic paraboloid (negative GC), and the smallest effects occur
for synclastic curvatures (positive GC), with zero effect for spheres.
Curvature effects on B;; for cylindrical shells are intermediate
between the two previous examples, as may be expected, due to their
zero GC value.

In the following sections, stiffness matrices resulting from
Eqgs. (21-24) are compared with the equivalent P.A. matrices, as in
[10]. Results for synclastic, developable, and anticlastic surfaces are
shown with the aim of showing both the order of magnitude of the
difference and the relationship between the difference and the
Gaussian curvature.

The material properties used in the following examples are
El =206.8 GPa, E2 =20.7 GPa, Vip = 025, GIZ = G13:
10.3 GPa, and Gy; = 4.1 GPa. Two different layups with stacking
sequences[45 30 90 O]sand[90, 0,4 ];areconsidered. All of
the structures have been chosen to have thickness 4 = 0.01 m and
thickness-to-radius ratios equal to 0.1 and less than 0.1, respectively.

For a useful comparison note that literature for shells having the
aforementioned features considers Ny, = Ny, M, = M,

I

GC=0= Bj;

2

GC<0= B, =

Ny An A A 9(1)
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In the following, a series of tables shows a comparison between
stiffness coefficients multiplying the same component of strain.

A. Elliptic Paraboloid

In Tables 1-6, the stiffness coefficients of an elliptic paraboloid
are presented. They correspond to the point on the top of the structure
that has been defined to have R, = 1/10 mand R, = 1/15 m.

Notably, the following relationships hold:

B/” By O 0

AE _| Bl Bg O 0
Q (RI ’ RZ) - 0 B/z/z 3%6
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B,, By, By 0 0 0
B = By, By By |=]0 0 0
Bis By Bgs 000
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Table 1 Stiffness A; parameters for [45 30 90 0 ]s laminated elliptic paraboloid at its peak

Plate approximation

Present equations

(i, )) A;;, GN/m A;;, GN/m Aj;, GN/m A}, GN/m Error %
(1,1) 1.0681 1.0683 N/A N/A 0.02
(2,2) 0.8339 0.8338 N/A N/A —0.01
(1,6) 0.2664 N/A 0.2666 N/A 0.08
(6,6) 0.2972 N/A 0.2973 N/A 0.03
(2,6) 0.1705 N/A N/A 0.1705 <0.01
(6,6) 0.2972 N/A N/A 0.2972 <0.01
4,4) 0.0685 0.0685 N/A N/A <0.01
(5,95) 0.0763 0.0763 N/A N/A <0.01

Table 2  Stiffness B; parameters for [45 30 90 0 ]s laminated elliptic paraboloid at its peak

Plate approximation

Present equations

) 1075 B,;, GN 10°-B;,GN  10°-B,,GN  10°-B/,GN  Emor %
(1,1 0.00 —2.3373 N/A N/A N/A
2.2) 0.00 2.0690 N/A N/A N/A
(1,6) 0.00 N/A —1.2462 N/A N/A
(6,6) 0.00 N/A —1.2744 N/A N/A
(2,6) 0.00 N/A N/A 0.9299 N/A
(6.6) 0.00 N/A N/A 1.2746 N/A

Table 3 Stiffness D; parameters for [45 30 90 0] laminated elliptic paraboloid at its peak

Plate approximation

Present equations

(.j) 10%-D;,GN-m 107°-D;,GN-m 10’6~D§i,GN-m 10’6~D;_’f, GN-m Error %
(1,1) 7.0109 7.0112 N/A N/A <0.01
(2,2) 6.1571 6.1322 N/A N/A —0.40
(1,6) 3.7342 N/A 3.7357 N/A 0.04
(6,6) 3.8178 N/A 3.8195 N/A 0.04
(2,6) 2.7851 N/A N/A 2.7828 —0.08
(6,6) 3.8178 N/A N/A 3.8147 —0.08

Table 4  Stiffness A; parameters for [ 90, 0, ]; laminated elliptic paraboloid at its peak

Plate approximation

Present equations

(i, )) A;;, GN/m A;;, GN/m Ajj, GN/m A;, GN/m Error %
(1,1) 1.1448 1.1373 N/A N/A —0.66
(2,2) 1.1448 1.1368 N/A N/A —-0.70
(1,6) 0.00 N/A 0.00 N/A 0.00
(6,6) 0.1034 N/A 0.1035 N/A 0.10
(2,6) 0.00 N/A N/A 0.00 0.00
(6,6) 0.1034 N/A N/A 0.1034 <0.01
4,4) 0.0724 0.0721 N/A N/A —-0.41
(5,5) 0.0724 0.0722 N/A N/A —0.28

Table 5 Stiffness B;; parameters for [90, 0, ], laminated elliptic paraboloid at its top

Plate approximation

Present equations

(i) 107 - B,;, GN 103-B,;,GN  107-B,,GN 107-B},GN Emor%
(1, 1) 23416 23107 N/A N/A 132
2.2) —2.3416 —2.3090 N/A N/A ~1.39
(1,6) 0.00 N/A 0.00 N/A 0.00
(6.6) 0.00 N/A —0.0028 N/A N/A
(2.6) 0.00 N/A N/A 0.00 0.00
(6.6) 0.00 N/A N/A 0.0028 N/A
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Fig. 1 Trend of h(1/R, — 1/R,) over a quarter of elliptic paraboloid.

As expected, the difference between the new and classic B;; elements
in Egs. (46) is of the order of D;;/R; and, as shown by the bﬁ’ terms in
Eq. (37), is proportional to h(1/R, —1/R;). Because of this
proportionality, the coupling follows the trend shown in Fig. 1. It is
also interesting to highlight that the effects of the curvature on the
stiffness matrices are remarkably larger for the unsymmetric layup.
These effects are also observed in the following examples
concerning a cylinder and a hyperbolic paraboloid and appear to be a
general feature.

PIRRERA AND WEAVER

B. Cylindrical Shell

Tables 7—-12 refer to a cylindrical structure. The radii of curvature
are constant through the domain so that 1/R, =10 m~' and
1/R, =0m~'. The relationship between the stiffnesses and
Gaussian curvature is clearly shown in Tables 1-18. The errors are
indeed progressively larger as GC decreases. As already mentioned,
this feature is magnified for unsymmetric stacking sequences.

C. Hyperbolic Paraboloid

In Tables 13-18, the stiffness coefficients of a hyperbolic
paraboloid are presented. They correspond to the saddle point of the
structure that has been taken to have 1/R, =—10 m~' and
1/R, = 10 m~'. The distribution of B;; terms follows the trend
shown in Fig. 2 and shows significant values, with their maximum
occurring at the center of the structure.

V. Geometrically Exact Strain Components

Tables 19-28 show a comparison between the components of
strain obtained using the present formulation [present equations
(P.E.)] and those valid for plates and commonly used for shells
(P.A.). The effect of accurately calculated stiffness coefficients on
free vibrations has been investigated in [4]. The main focus here is to
show that the same approach may have relevant influences on the
nonlinear behavior of shell structures. In fact, it is shown that even
the slightest difference in the stiffness matrix may lead to appreciably
different components of strain. This is shown by applying unitary
stress resultants to the structural points of the symmetric laminate,

Table 6 Stiffness D;; parameters for [ 904

04 ] laminated elliptic paraboloid at its top

Plate approximation

Present equations

(i.j) 10°-D;,GN-m 10°-D;,GN-m 10°-D/,GN-m 10°-D},, GN-m Error %
(1,1) 9.5399 9.4470 N/A N/A —0.97
(2.2 9.5399 9.4167 N/A N/A —1.29
(1,6) 0.00 N/A 0.00 N/A 0.00
(6,6) 0.8618 N/A 0.8621 N/A 0.03
(2.6) 0.00 N/A N/A 0.00 0.00
(6,6) 0.8618 N/A N/A 0.8604 —0.16

Table 7 Stiffness A; parameters for [45 30 90 0] laminated cylinder (1/R = 0.1)

Plate approximation

Present equations

(i, )) A;;, GN/m A;;, GN/m Al GN/m Al GN/m Error %
(1,1) 1.0681 1.0681 N/A N/A 0.00
2,2) 0.8339 0.8345 N/A N/A 0.07
(1,6) 0.2664 N/A 0.2664 N/A 0.00
(6,6) 0.2972 N/A 0.2972 N/A 0.00
(2,6) 0.1705 N/A N/A 0.1708 0.18
(6,6) 0.2972 N/A N/A 0.2976 0.13
4,4) 0.0685 0.0686 N/A N/A 0.15
(5,5) 0.0763 0.0763 N/A N/A 0.00

Table 8 Stiffness B;; parameters for [45 30 90 0] laminated cylinder (1/R = 0.1)

Plate approximation

Present equations

(i) 107 - B;;, GN 10°-B,;,GN  10°-B,,GN  10°-B/,GN  Emor%
(1,1 0.00 7.0109 N/A N/A N/A
2,2) 0.00 —6.1655 N/A N/A N/A
(1,6) 0.00 N/A 3.7342 N/A N/A
(6.6) 0.00 N/A 3.8178 N/A N/A
(2,6) 0.00 N/A N/A —2.7901 N/A
(6,6) 0.00 N/A N/A —3.8241 N/A




Table 13  Stiffness A; parameters for [45 30 90 0] laminated hyperbolic paraboloid at its saddle point
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Table 9 Stiffness D;; parameters for [45 30 90 0] laminated cylinder (1/R = 0.1)

Plate approximation

Present equations

(i.j) 10°-D;,GN-m 10°-D;,GN-m 10°-D/,GN-m 10°-D},, GN-m Error %
(1,1) 7.0109 7.0109 N/A N/A 0.00
(2.2 6.1571 6.1655 N/A N/A 0.14
(1,6) 3.7342 N/A 37342 N/A 0.00
(6,6) 3.8178 N/A 3.8178 N/A 0.00
(2,6) 27851 N/A N/A 2.7901 0.18
(6,6) 3.8178 N/A N/A 3.8241 0.17

Table 10  Stiffness A; parameters for [90, 0, ], laminated cylinder (1/R = 0.1)

Plate approximation Present equations
(i, )) A;;, GN/m A;j, GN/m Aj;, GN/m A}, GN/m Error %
(1, 1) 1.1448 1.1682 N/A N/A 2.04
(2,2) 1.1448 1.1692 N/A N/A 2.13
(1,6) 0.00 N/A 0.00 N/A 0.00
(6,6) 0.1034 N/A 0.1034 N/A 0.00
(2,6) 0.00 N/A N/A 0.00 0.00
(6,6) 0.1034 N/A N/A 0.1035 0.10
4.4) 0.0724 0.0732 N/A N/A 1.10
(5.5) 0.0724 0.0732 N/A N/A 1.10

Table 11  Stiffness B; parameters for [ 90, 0, ]; laminated cylinder (1/R = 0.1)

Plate approximation

Present equations

(i.)) 107 - B,;, GN 103-B,;,GN  103-B,,GN  10°-B/,GN  Emor %
(1, 1) 23416 2.4370 N/A N/A 4.07
(2.2) —2.3416 —2.4401 N/A N/A 421
(1,6) 0.00 N/A 0.00 N/A 0.00
(6.6) 0.00 N/A 0.0086 N/A N/A
(2,6) 0.00 N/A N/A 0.00 0.00
(6,6) 0.00 N/A N/A —0.0086 N/A

Table 12  Stiffness D; parameters for [90, 0, |, laminated cylinder (1/R = 0.1)

Plate approximation

Present equations

(i.j) 10°%-D;;GN-m 10°-D;,GN-m 10°-D/,,GN-m 10°-D};, GN-m Error %
(1.1 9.5399 9.8326 N/A N/A 3.07
2,2) 9.5399 9.8474 N/A N/A 3.22
(1,6) 0.00 N/A 0.00 N/A 0.00
(6.6) 0.8618 N/A 0.8618 N/A 0.00
(2.6) 0.00 N/A N/A 0.00 0.00
(6.6) 0.8618 N/A N/A 0.8631 0.15

Plate approximation

Present equations

(i, )) A;;, GN/m A;j, GN/m Aj;, GN/m Al;, GN/m Error %
(GI))] 1.0681 1.0695 N/A N/A 0.13
2,2) 0.8339 0.8351 N/A N/A 0.14
(1,6) 0.2664 N/A 0.2672 N/A 0.30
(6, 6) 0.2972 N/A 0.2980 N/A 0.27
2,6) 0.1705 N/A N/A 0.1711 0.35
(6,6) 0.2972 N/A N/A 0.2980 0.27
4.4 0.0685 0.0686 N/A N/A 0.15
(5.5) 0.0763 0.0764 N/A N/A 0.13
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Table 14  Stiffness B; parameters for [45 30 90 0] laminated hyperbolic paraboloid at its saddle point

Plate approximation Present equations

) 10*- B,;, GN 10*-B;;,GN 10 B};, GN 10 - B};, GN Error %
(1.1 0.00 1.4043 N/A N/A N/A
2.2) 0.00 —1.2334 N/A N/A N/A
(1,6) 0.00 N/A 0.7480 N/A N/A
(6.6) 0.00 N/A 0.7648 N/A N/A
(2.6) 0.00 N/A N/A —0.5580 N/A
(6.6) 0.00 N/A N/A —0.7647 N/A

Table 15  Stiffness D; parameters for [45 30 90 0 ]s laminated hyperbolic paraboloid at its saddle point

Pl

ate approximation

Present equations

) 10°-D;;,GN-m 10°-D;;,GN-m 1079~ Dj;, GN-m 10%- D}, GN-m  Error %
(1,1 7.0109 7.0315 N/A N/A 0.29
(2,2) 6.1571 6.1771 N/A N/A 0.32
(1,6) 3.7342 N/A 3.7456 N/A 031
(6.6) 3.8178 N/A 3.8302 N/A 0.32
(2.6) 2.7851 N/A N/A 2.7952 0.36
(6.6) 3.8178 N/A N/A 3.8291 0.30

Table 16 Stiffness A; parameters for [ 90,

04 ] laminated hyperbolic paraboloid at its saddle point

Plate approximation

Present equations

(i, )) A;;, GN/m A;;, GN/m Aj;, GN/m A}, GN/m Error %
(L 1.1448 1.1936 N/A N/A 4.26
2,2) 1.1448 1.1936 N/A N/A 4.26
(1,6) 0.00 N/A 0.00 N/A 0.00
(6,6) 0.1034 N/A 0.1036 N/A 0.19
2,6) 0.00 N/A N/A 0.00 0.00
(6,6) 0.1034 N/A N/A 0.1036 0.19
4,4 0.0724 0.0741 N/A N/A 2.35
5.5) 0.0724 0.0741 N/A N/A 2.35

Table 17  Stiffness B; parameters for [ 90,

04 ] laminated hyperbolic paraboloid at its saddle point

Plate approximation

Present equations

) 1073- B;;, GN 10°-B,,GN  107°-B,,GN  107°-B},GN  Error %
(1.1 23416 2.5386 N/A N/A 8.41
2.2) —2.3416 —2.5386 N/A N/A 8.41
(1,6) 0.00 N/A 0.00 N/A 0.00
(6.6) 0.00 N/A 0.0172 N/A N/A
(2.6) 0.00 N/A N/A 0.00 0.00
(6.6) 0.00 N/A N/A —0.0172 N/A

Table 18 Stiffness D; parameters for [ 90,

04 ]; laminated hyperbolic paraboloid at its saddle point

Plate approximation

Present equations

(i, j) 10°-D;;, GN-m 10°-D;;, GN-m 107%- D};, GN-m 107%.D},GN-m  Error %
(1,1) 9.5399 10.1560 N/A N/A 6.46
2,2) 9.5399 10.1381 N/A N/A 6.27
(1,6) 0.00 N/A 0.00 N/A 0.00
(6,6) 0.8618 N/A 0.8645 N/A 0.31
(2,6) 0.00 N/A N/A 0.00 0.00
(6,6) 0.8618 N/A N/A 0.8638 0.23




Fig. 2 Trend of h(1/R, — 1/R;) over a hyperbolic paraboloid.

used in the previous sections, and calculating the resulting
deformations by inverting Eq. (20).

Data in Tables 25 and 26 include effects of combined stretching-
bending. The large discrepancies are explained in terms of orders of

PIRRERA AND WEAVER 779

magnitude effects by using the same assumptions that led to Egs. (41)
and (42). The following expressions are obtained by inverting
Eq. (20) and applying loads as in Tables 25 and 26. In fact, one can
show that the errors are proportional to

(1/R)) = (1/R) [h_z (L_L) - 1}
1= (2/12)[(1/R,) — (I/R)P} [12\R, " R,

=~ O(10%% @)
and
(W*/12)[(1/R,) — (1/R))] 11 o
(1= 02/1D[(1/R) — (1/R)F} [(RT‘RT) B 1] = 0(107)%
(48)

for in-plane and out-of-plane components of deformation,
respectively. The order of magnitude of the error for the in-plane
components of strain is thus explained. It is due to the presence of a
populated coupling matrix and obviously tends to zero when the
principal curvatures tend to infinity.

The data in Table 28 are particularly interesting because they
present a loading condition that cannot be reproduced by assuming
the plate approximation. In that case, the artificially achieved

Table 19 Strain components for [45 30 90 0] laminate

Applied load N;; =1 N/m, Q;; =1 N/m

Paraboloid Cylinder Hyperboloid
107°-P.A. 10~°-P.E. Error % 10~°-P.E. Error % 10~°-P.E. Error %
&Y 1.2232 1.229 0.47 1.2297 0.53 1.2302 0.57
&) —0.1545 —0.1387 —10.21 —0.1386 —10.26 —0.1385 —10.35
) + o —1.0079 —0.7595 —24.65 —0.7595 —24.64 —0.7596 —24.63
&) —2.8853 —2.885 —0.01 —2.8827 —0.09 —2.8753 —0.35
el 13.6583 13.6545 —0.03 13.6578 <0.01 13.6343 —0.18
el 0 4.3098 N/A —12.381 N/A —24.9202 N/A
e} 0 —0.3541 N/A 0.426 N/A 1.0613 N/A
ol + o} 0 —4.6293 N/A 3.5694 N/A 10.5564 N/A
Table 20 Strain components for [45 30 90 0] laminate
Applied load N, =1 N/m, Q,, =1 N/m
Paraboloid Cylinder Hyperboloid
1072 -P.A. 10-°-P.E. Error % 10 -P.E. Error % 10 -P.E. Error %
) —0.1545 —0.1387 —10.21 —0.1386 —10.26 —0.1385 —10.35
e 1.3781 1.4204 3.07 1.4202 3.05 1.4218 3.17
o + ) —0.6522 0.0101 —101.55 0.0103 —101.59 0.0098 —101.5
o 15.2045 15.2074 0.02 15.1909 —0.09 15.1762 —0.19
el —2.8853 —2.885 —0.01 —2.8827 —0.09 —2.8753 —0.35
el 0 0.9414 N/A —1.375 N/A —3.2243 N/A
el 0 —5.2142 N/A 13.9371 N/A 28.4382 N/A
ol + o} 0 —6.6581 N/A —7.5181 N/A —5.8672 N/A
Table 21 Strain components for [45 30 90 0]s laminate
Applied load N;; =1 N/m, N, =1 N/m
Paraboloid Cylinder Hyperboloid
107 - P.A. 10~ -P.E. Error % 10~°-P.E. Error % 10~° -P.E. Error %
&l 1.0687 1.0903 2.02 1.091 2.09 1.0917 2.15
e 1.2236 1.2817 4.75 1.2815 4.74 1.2833 4.88
) + o —1.66 —0.7494 —54.86 —0.7492 —54.87 —0.7498 —54.83
e} 0 5.2512 N/A —13.7561 N/A —28.1445 N/A
e} 0 —5.5683 N/A 14.3632 N/A 29.4995 N/A
o} + o} 0 —11.2873 N/A —3.9488 N/A 4.6892 N/A
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Table 22  Strain components for [45 30 90 0] laminate

Applied load M;; =1 N

Paraboloid Cylinder Hyperboloid
107°-P.A. 107°-P.E. Error % 107°-P.E. Error % 107°-P.E. Error %
&) 0 0.0043 N/A —0.0124 N/A —0.0249 N/A
e 0 0.0009 N/A —0.0014 N/A —0.0032 N/A
o + &) 0 0.0045 N/A 0.0094 N/A 0.0112 N/A
el 307.5838 307.467 —0.04 307.7032 0.04 307.2542 —0.11
e} —49.6147 —49.615 <0.01 —49.5925 —0.04 —49.5103 —0.21
ol + v} —264.6526 —264.6258 —0.01 —264.7113 0.02 —264.163 —0.18
Table 23  Strain components for [45 30 90 0] laminate
Applied load M5, =1 N
Paraboloid Cylinder Hyperboloid
107°-P.A. 107°-P.E. Error % 107°-P.E. Error % 107°-P.E. Error %
el 0 —0.0004 N/A 0.0004 N/A 0.0011 N/A
e 0 —0.0052 N/A 0.0139 N/A 0.0284 N/A
o) + o 0 —0.0059 N/A —0.0091 N/A —0.0092 N/A
el —49.6147 —49.615 <0.01 —49.5925 —0.04 —49.5103 —-0.21
el 250.4062 250.4879 0.03 250.2728 —0.05 250.4132 <0.01
ol + o} —134.1468  —134.0989 —0.04 —134.03 -0.9 —134.0839 —0.05
Table 24  Strain components for [45 30 90 0] laminate
Applied load M;; =1 N, My, =1 N
Paraboloid Cylinder Hyperboloid
107%-P.A. 107¢ - P.E. Error % 107%-P.E. Error % 10°-P.E. Error %
2 0 0.004 N/A —0.012 N/A —0.0239 N/A
&) 0 —0.0043 N/A 0.0126 N/A 0.0252 N/A
o + o 0 —0.0014 N/A 0.0003 N/A 0.0019 N/A
el 257.9691 257.852 —0.05 258.1106 0.05 257.7439 —0.09
e} 200.7915 200.8729 0.04 200.6803 —0.06 200.9029 0.06
ol + o} —398.7993  —398.7246 —0.02 —398.7413 —0.01 —398.2469 —0.14
Table 25 Strain components for [45 30 90 0] laminate
Applied load N;; =1 N/m,M;; =1N
Paraboloid Cylinder Hyperboloid
107°-P.A. 107 - P.E. Error % 107 - P.E. Error % 10°-P.E. Error %
& 0.0012 0.0055 352.8 —0.0112 —1011.63 —0.0237 —2036.67
e —0.0002 0.0008 —619.53 —0.0015 879.75 —0.0034  2076.64
@) + o —0.001 0.0037 —468.14 0.0086 —956.33 0.0104 —1132.13
el 307.5838 307.4713 —0.04 307.6908 0.03 307.2293 —0.12
e} —49.6147 —49.6153 <0.01 —49.5921 —0.05 —49.5092 —0.21
ol + o) —264.6526 —264.6304 —0.01 —264.7078 0.02 —264.1524 —0.19
Table 26 Strain components for [45 30 90 0] laminate
Applied load Ny, = 1 N/m, My, =1 N
Paraboloid Cylinder Hyperboloid
10°°.P.A. 10°°.P.E. Error % 10~ - P.E. Error % 10~ - P.E. Error %
&l —0.0002 —0.0005 219.01 0.0003 —286.02 0.0009 —697.31
&) 0.0014 —0.0038 —375.3 0.0154 1014.41 0.0299 2066.81
o + o —0.0007 —0.0058 796.08 —0.009 1287.63 —0.0092 1315.73
el —49.6147 —49.614 <0.01 —49.5939 —0.04 —49.5135 —-0.2
e} 250.4062 250.4827 0.03 250.2867 —0.05 250.4416 0.01
ol + o) —134.1468 —134.1055 —-0.03 —134.0375 —0.08 —134.0898 —0.04
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Table 27 Strain components for [45 30 90 0] laminate

Applied load Nj, =1 N/m, N,; =1 N/m

Paraboloid Cylinder Hyperboloid
10~° - P.A. 10~°-P.E. Error % 10~°-P.E. Error % 10~°-P.E. Error %
el —1.0079 —0.7595 —24.65 —0.7595 —24.64 —0.7596 —24.63
e —0.6522 0.0101 —101.55 0.0103 —101.59 0.0098 —101.5
@) + o 4.6422 15.0629 224.48 15.0727 224.69 15.0727 224.69
e} 0 4.4698 N/A 9.3903 N/A 11.1622 N/A
es 0 —5.8539 N/A —9.0599 N/A —9.2426 N/A
o} + o} 0 —134.0898 N/A —70.5098 N/A 3.3273 N/A
Table 28 Strain components for [45 30 90 0]s laminate
Applied load M|, =1 Nand M,; =R,/R; N
Paraboloid Cylinder Hyperboloid
My =R,/R, =15N My =R,/R, =0N My =R,/R, =—1N
P.A. P.E. Error %  P.A. P.E. Error %  P.A. P.E. Error %
& 0 -3.0711 N/A 0 —2.0371 N/A 0 —2.0275 N/A
& 0 —8.1779 N/A 0 —5.455 N/A 0 —5.4364 N/A
o) + o 0 —128.7234 N/A 0 —85.9029 N/A 0  —85.9085 N/A
el N/A  —350.0595 N/A N/A  —281.5233 N/A N/A —235.2312 N/A
e% N/A —118.5717 N/A N/A 53.8131 N/A N/A  168.631 N/A
ol + 0wl NA 22357513 N/A N/A 947.4728 N/A N/A 87.1956 N/A
symmetry of the stress resultants implies M, = M,,. However, Acknowledgments

Eq. (13) is more appropriate and if N\, = N,; = 0and M, = 1, then
My = Ry/R;.

It is noted that due to Eq. (13), the stiffness matrix of Eq. (20) is
singular and cannot be inverted as is. This problem is easily
overcome, because by using Eq. (13) and by noting that &9 is equal to
@9, due to Eq. (40), it is possible to reduce the 10 by 10 singular
stiffness matrix to a 9 by 9 for which the determinant is nonzero.

VL

General equations of multilayered anisotropic shells were
developed by including the effects of shear deformation, initial
curvature, and geometrically nonlinear deformation effects. A novel
expression for the stiffness matrix has been presented in which the
relationship between the shell shape and the stiffness coefficients has
been made explicit.

It is noted that the linear part of the developed model is in good
agreement with results from [4]; the model has been further extended
to include the effects of geometrically nonlinear deformations and to
take into account and solve the most common theoretical
inconsistencies of previous formulations. Precisely, retaining the
coefficient 1 4+ ¢/R; in the definition of stress resultants has made it
possible to satisty the equation of drilling equilibrium. Also, because
it is based on the work by Reddy [9,10], the present model does not
give nonphysical strain and stress resultants due to rigid-body
motion.

The role of geometry (initial curvatures) as a source of anisotropy
has been analyzed. It has been shown that the effect of curvature
significantly affects the bending-stretching matrix and that its
magnitude depends on the sign of the Gaussian curvature and on the
degree of symmetry of lamination. Generally, each element of the
stiffness matrix partially depends on the thickness/local radius of
curvature ratio and on the Gaussian curvature.

The stiffness coefficients presented herein differ from those
obtained with the plate approximation, giving errors up to 5-8% for
values of thickness-to-radius ratios of the order of 0.1. It is shown that
neglecting curvature effects may lead to variations of the strain
components from a few to several dozens of percentage points. It is
noted that such a difference may significantly affect buckling and
postbuckling phenomena.

Conclusions

The authors thank the funding of Airbus United Kingdom and
South West Regional Development Agency through a Great Western
Research grant.
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