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A generalized first-order shear deformation theory for anisotropic multilayered shells is presented. It includes the

effects of geometrically nonlinear deformations and general initial curvature. The field equations are expressed in

orthogonal conjugate curvilinear coordinates in the shell’s middle surface. Hence, this formulation is particularly

suitable for the analysis of monocoque structures formed using the increasingly exploited fiber-placement

manufacturing techniques. A novel expression for the stiffness matrix is presented in which the relationship between

the shell shape and the stiffness coefficients is highlighted. It is also shown that the stiffnesses herein obtained may

lead to significantly different deformation fields from those based upon flat-plate expressions.

Nomenclature

A1, A2 = Lamé coefficients
Aij, Bij, Dij = stiffness matrix coefficients
Aij, Bij, �ij, �ij = stiffness matrix coefficients
a1, a2 = scale factors
E, F, G = surface metric tensor elements
Eij, Zij, Hij = stiffness matrix coefficients
e11, e22 = linear elongation of those line elements

having (before deformation) directions
coincident with the coordinate directions

e12, e13, e23 = linear shear deformations between those line
elements having (before deformation)
directions coincident with the coordinate
directions

I0, I1, I2 = mass inertias
Ks = shear correction factor
Nij,Mij, Qij = stress resultants per unit length
�Qij = transformed stiffnesses referred to the

laminate coordinate directions
R = position vector of an arbitrary point
R1, R2 = normal radii of curvature of the middle

surface
r = position vector of a point on the middle

surface
u, v, w = displacements
u0, v0, w0 = displacements of the middle surface of the

shell
�K = virtual variation of the kinematic energy
�U = virtual variation of the strain energy
�V = virtual variation of the potential of the

applied forces
"ij = nonlinear strain components
"11, "22 = nonlinear elongation of those line elements

having (before deformation) directions
coincident with the coordinates directions

"12, "13, "23 = nonlinear shear deformations (change of
angles) between those line elements having
(before deformation) directions coincident
with the coordinate directions

�1, �2, � = orthogonal curvilinear coordinates
�i = stress components
�1, �2 = rotations of a normal to reference surface
!1, !2, !3 = components of the curl of the displacement

field

I. Introduction

O NE of the most remarkable features of composite materials is
their versatility that allows engineers to design not only a

structure but also its constituent material. Partly due to their excellent
specific stiffness, there is often the tendency to use them to replicate
the well-known behavior of isotropic materials, thus missing the
opportunity to exploit many of the benefits that composites could
provide.

It is becoming increasingly important for novel applications to
exploit the capabilities that composite laminates offer by either
increasing structural efficiency or by creating novel functionality.
For instance, parts made from unsymmetric stacking sequences have
been rarely used, because they may introduce several structural
couplings and because they may develop internal stresses and warp
when cooling down from cure to room temperature. Nonetheless,
these or similar phenomena offer great capabilities for novel
concepts to be used in emerging research fields such as elastic
tailoring and morphing structures [1].

To exploit these capabilities it is crucially important to fully
understand the structural behavior of thematerials and to examine all
sources of anisotropy. The aim of this paper is to gather the
understanding necessary to design materials and to obtain tailored
structural responses of general shells. Particular attention is given to
the relationship between curvatures and stiffness coefficients.

Shell structures have been widely used in engineering
applications. The literature offers a variety of theories for both
general elasticity problems and particular design purposes. Each
theory or analysis has been developed starting from a common point:
namely, the differential equations of elastic equilibrium. However,
they may differ greatly, depending on the different purpose-driven
assumptions and approximations used. Furthermore, despite the
availability of a huge variety of papers dedicated to the study of most
shell-related structural phenomena, literature almost exclusively
applies to the analysis of shells of practical and common use in
engineering. Therefore, most published work has been concerned
specifically with simple shapes such as cylinders, spheres, cones, or,
more generally, shells having small ratios of thickness to radius of
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curvature. Under this assumption, the effect of the curvature on
stiffnesses is often negligible [2].

Comprehensive literature reviews on the mechanics of laminated
anisotropic shells can be found in recent papers by Qatu [2] and
Toorani and Lakis [3]. Survey articles often emphasize that shear
deformations and rotary inertia effects are generally more important
for composites than for isotropic materials. Interestingly, Qatu [4,5]
showed that neglecting the geometric terms 1� �=Ri, in addition to
leading to stress resultants that contradict the equations of
equilibrium [6], may entail errors of the same order of magnitude as
those introduced by Kirchhoff–Love’s first approximation.
Furthermore, independently andwith a different approach,Voyiadjis
and Shi [7] andVoyiadjis andWoelke [8] showed,with their work on
isotropic shells, that curvature has a significant effect on shell
elasticity. They found that the effect of initial curvature on stress
resultants and couples is, in general, not negligible. In the present
formulation, the term 1� �=Ri is integrated exactly. It will be shown
that this procedure provides precise relationships between the
stiffness coefficients and shell curvatures and, notably, the influence
that these relationships has on both linear and nonlinear structural
phenomena.

For all of the aforementioned reasons, the current work attempts to
develop a novel model describing shell-like two-dimensional
structures. A first-order shear deformation theory (FSDT) for
anisotropic, multilayered, deep, and thick shells is presented. It is
based on work by Reddy [9,10] for thin, doubly curved, shallow
shells. It is the current aim to further develop that work to shells of
general shape by following Qatu’s [4,5] recommendations and
including the effects of geometrically nonlinear deformations, as
described by Novozhilov [11,12].

In an attempt to be as general as possible, the model takes into
account full anisotropy, general shell geometry, and nonlinear and
transverse shear deformations. Inconsistencies that were common in
many of the past theories have been considered and overcome
[6,9,10,13–15].

The field equations are expressed in curvilinear coordinates lying
on the shell’s middle surface. For the sake of simplicity, this net is
taken to be coincident with the surfaces’ principal curves (sometimes
called lines of curvature). A novel expression for the stiffness matrix
is presented. It is also shown thatmany of the stiffness coupling terms
and the strain components are strongly dependent on the shape of the
structure.

Finally, it is noted that there have been a great number of technical
papers on the theory of shells in the last century. Those of particular
interest, which are in addition to those already mentioned, are
detailed in [16–40].

II. Theoretical Development

In the following sections, the theoretical development leading
from the governingfield equations to the analytical solution (namely,
the load-displacement equations for shell structures) are presented.

The usual assumptions are followed:
1) There is linear elastic behavior of the material.
2) The transverse normal fibers are not elongated.
3) The normal stress in the thickness direction is negligible

compared with other stresses in the same direction.
4) The Kirchhoff–Love hypothesis is relaxed, and so those

elemental fibers that were straight and normal to the middle plane
before deformation remain straight but are no longer normal to that
plane after deformation.

A. Geometry of Curved Surfaces

The previous assumptions allow the mechanics of the shell to be
described as a two-dimensional problem. The structural behavior of
the generic shell is then reduced to a function of its middle surface. It
is assumed that the middle surface of the shell structure is described
by the curvilinear coordinate system (�1; �2; �) [10], where �1 and �2
are coordinates describing the position on themiddle surface, and � is
the coordinate in the thickness direction. This being the case, points

on the middle surface and in an arbitrary position are described,
respectively, by vectors r� r��1; �2; 0� and R�R��1; �2; ��.

The metric properties of a surface are completely described by the
first fundamental form. It determines the length of an element of
middle surface as

ds2 � dr � dr� Ed�21 � 2Fd�1d�2 �Gd�22 (1)

The coefficients in Eq. (1) represent the elements of the surface
metric tensor and are defined as

E� @r
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In curvilinear coordinate systems, the quantities a1 �
����
E
p

and

a2 �
����
G
p

represent the length of the vectors tangent to curves of
constant �1 and �2 and are called scale factors, andF is proportional to
the angle � between the tangent vectors and is equal to a1a2 cos�.
Similarly, A1 and A2, the so-called Lamé coefficients, have
analogous meanings for points through the thickness. Provided that
R1 andR2 denote the normal radii of curvature of the middle surface,
then

A1 � a1
�
1� �

R1

�
; A2 � a2

�
1� �

R2

�
(3)

The first fundamental form defines a family of surfaces with the same
metric. The surface itself is fully determined by also considering the
coefficients of the second fundamental form. These coefficients are
related to the surface curvature and are defined as
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where n is the unit vector normal to the middle surface and is defined
as

n �
�
@r

@�1
� @r
@�2

��
a1a2 (5)

For the sake of simplicity, in the following formulation, the
elasticity equations will be expressed in the curvilinear coordinates
system defined by the surface’s principal curves (i.e., curves for
which the tangent is always coincident with one of the principal
directions). It is then assumed that the coordinate lines are both
orthogonal (F� 0) and conjugate (M � 0). This can be done
without losing generality. Although the coefficients of the
fundamental forms depend on the surface parametric definition
that is adopted, finding a coordinate transformation to fulfill the
preceding requirements (i.e., F�M� 0) is not a trivial matter.
However, in the theory of surfaces, it has been proved that every
surface can be referred to its principal lines and that they are uniquely
determined (see [4,6,16] for further details).

Here, a common analytical method to find principal curves is
briefly described. It exploits the concept of the velocity vector of a
curve. Letx be a surface defined inR3 and let��t� � x�f�t�; g�t�� be
a curve lying on it. Then � is a principal curve if and only if the
following differential equation [16] holds:

�ME � LF�
�
df

dt

�
2

� �NE � LG� df
dt

dg

dt

� �NF �MG�
�
dg

dt

�
2

� 0 (6)

In fact, note that for certain surfaces, there is a more convenient
method to find principal curves based on the notion of a triply
orthogonal system of surfaces [16].

B. Strain-Displacement Relations

The nonlinear strains, under the hypothesis of small relative
deformations, are defined in curvilinear coordinates [11] as
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The expressions in Eqs. (7) are a nonlinear combination of those
elements that fully describe continuum deformations under the
hypothesis of small displacements and rotations: that is, in the
classical linear theory of elasticity (in which "ij 
 eij). It is shown in
several works [2–15] that linear deformations in orthogonal
curvilinear coordinates are described using the relationships
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According to the hypothesis described at the beginning of Sec. II,
the surface displacements u, v and w are assumed to be

u��1; �2; �; t� � u0��1; �2; t� � ��1��1; �2; t�
v��1; �2; �; t� � v0��1; �2; t� � ��2��1; �2; t�
w��1; �2; �; t� �w0��1; �2; t�

(9)

Substituting Eqs. (9) into Eqs. (8) enables the linear strains to be
separated into terms (or components) depending on displacements
and rotations of the middle surface:
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where superscripts 0 and 1 refer to in-surface and out-of-surface
components of linear deformations, respectively. Substituting
Eqs. (10) into Eqs. (7), the following expressions for nonlinear
strains are obtained:
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Equation (7) or Eq. (11) are generally valid for small relative
deformations, but in some practical problems, this level of accuracy
might be not necessary. Simplified expressions (even though less
general) can be found in [11] under the hypothesis of small rotations
or in [10] with von Kármán nonlinearities. The proposed model can
be simplified accordingly.

C. Stress Resultants

The stress resultants acting on the shell element are obtained by
integrating each stress over the thickness [10] as
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whereKs is the shear correction factor used to adjust the discrepancy
between the true variation of the transverse shear and that which has
been imposed.

The definition of the stress resultants is a key feature of the present
formulation andmerits further discussion. Inmany shallow thin shell
theories, the term 1� �=Ri, which is due to the integration over the
thickness of a curved section, has been ignored and the stiffness
coefficients have been calculated as for flat plates {henceforth, we
will refer to this as plate approximation (P.A.) [4]}. This led to fairly
good results, even though it was clear that the artificially achieved
symmetry of the resultants Mij �Mji and Nij � Nji contradicts
drilling equilibrium [6]. This inconsistency was often overcome by
expanding the term in a geometric series, thus restoring the
relationship

M21

R2

�M12

R1

� N21 � N12 � 0 (13)

which derives from the exact definition of resultants and identically
satisfies one of the equilibrium equations. Alternatively, some
researchers including the effects of 1� �=Ri suggested the use of
modified stress resultants to ensure symmetry [13–15,17].

As already established, transverse shear deformations may have a
significant role in the mechanics of thick laminated composite
structures, and their effectsmay need to be included in the analysis of
shells. According to [4], the error introduced by neglecting them is of
the same order of magnitude as that created by approximating
1� �=Ri to unity.

For consistency purposes, the integration of Eqs. (12) has to then
be carried out exactly. By so doing, we will find that curvatures are a
source of anisotropy (coupling between membrane and flexural
effects), even for isotropic materials, and that the stiffness
coefficients are not constants, as when calculated with the flat-plate
approximation, but functions of the curvatures. Reference [4] also
shows that the results of the study of linear phenomena using exact
stiffness coefficients are generally more accurate when compared
with those of FSDT or even higher-order shear deformation theory.
This degree of accuracy is due to the different way in which the
stiffness matrix is calculated. It will be shown here that this
difference will lead to appreciably different values of strain
components. It is thus argued that maintaining the accurate
expression of the stresses resultant will affect nonlinear effects such
as buckling or postbuckling phenomena.

D. Constitutive Relations

Suppose that the shell structure is composed ofN layers. For each
layer, the constitutive law is8>>>>><
>>>>>:
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For convenience, in Eq. (14), the strain vector is split in two parts in
which the superscripts L and NL mean linear and nonlinear,

respectively. Similarly, the stress resultants are presented as a sum of
two vectors corresponding to distributed forces and moments
resulting from linear and nonlinear strains so that, for example, N11

will be the sum of NL11 and N
NL
11 .

By means of Eqs. (7), one can write8>>>>><
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Substituting Eq. (14) back into Eqs. (12) and integrating the
resulting expressions, it is then possible to obtain the laminate
constitutive relations reported in Eqs. (17–19) and (26–28).

E. Laminate Stiffness Matrix Corresponding to Linear Strains

The constitutive equations are8>>>>>><
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or, in a more compact form,
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9>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>;

L

�

A11 A016 0 A12 A16 0 B11 B016 B12 B16

A016 A066 0 A26 A66 0 B016 B066 B26 B66

0 0 KsA44 0 0 KsA45 0 0 0 0

A12 A26 0 A22 A0026 0 B12 B26 B22 B0026

A16 A66 0 A0026 A0066 0 B16 B66 B0026 B0066

0 0 KsA45 0 0 KsA55 0 0 0 0

B11 B016 0 B12 B16 0 D11 D016 D12 D16

B016 B066 0 B26 B66 0 D016 D066 D26 D66

B12 B26 0 B22 B0026 0 D12 D26 D22 D0026

B16 B66 0 B0026 B0066 0 D16 D66 D0026 D0066

2
66666666666666666666664

3
77777777777777777777775

�

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

e01

!0
1

e04

e02

!0
2

e05

e11

!1
1

e12

!1
2

9>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>;

(20)

The elements of Eqs. (17–20), which are due to the linear part of
the strain components, are calculated using

A�

A11 A016 A12 A16

A016 A066 A26 A66

A12 A26 A22 A0026

A16 A66 A0026 A0066

2
66664

3
77775

�
XN
k�1

aLR1

�Q11 aLR1

�Q16 cL �Q12 cL �Q16

aLR1

�Q16 aLR1

�Q66 cL �Q26 cL �Q66

cL �Q12 cL �Q16 aLR2

�Q22 aLR2

�Q26

cL �Q26 cL �Q66 aLR2

�Q26 aLR2

�Q66

2
666664

3
777775

�k�

(21)

B�

B11 B016 B12 B16

B016 B066 B26 B66

B12 B26 B22 B0026

B16 B66 B0026 B0066

2
66664

3
77775

�
XN
k�1

bLR1

�Q11 bLR1

�Q16 dL �Q12 dL �Q16

bLR1

�Q16 bLR1

�Q66 dL �Q26 dL �Q66

dL �Q12 dL �Q16 bLR2

�Q22 bLR2

�Q26

dL �Q26 dL �Q66 bLR2

�Q26 bLR2

�Q66

2
666664

3
777775

�k�

(22)

D�

D11 D016 D12 D16

D016 D066 D26 D66

D12 D26 D22 D0026

D16 D66 D0026 D0066

2
66664

3
77775

�
XN
k�1

eLR1

�Q11 eLR1

�Q16 fL �Q12 fL �Q16

eLR1

�Q16 eLR1

�Q66 fL �Q26 fL �Q66

fL �Q12 fL �Q16 eLR2

�Q22 eLR2

�Q26

fL �Q26 fL �Q66 eLR2

�Q26 eLR2

�Q66

2
666664

3
777775

�k�

(23)

A44 A45

A45 A55

� �
�
XN
k�1

aLR2

�Q44 cL �Q45

cL �Q45 aLR1

�Q55

" #�k�
(24)

and

aLR1
� R1

R2

�
��k�1 � �k� � �R2 � R1� ln

�
R1 � �k�1
R1 � �k

��

bLR1
� R1

R2

�
1

2
��2k�1 � �2k� � �R2 � R1���k�1 � �k�

� R1�R2 � R1� ln
�
R1 � �k�1
R1 � �k

��

cL � ��k�1 � �k� dL � 1

2
��2k�1 � �2k�

eLR1
� R1

R2

�
1

3
��3k�1 � �3k� �

1

2
�R2 � R1���2k�1 � �2k�

� R1�R2 � R1���k�1 � �k� � R2
1�R2 � R1� ln

�
R1 � �k�1
R1 � �k

��

fL � 1

3
��3k�1 � �3k� (25)

Similar coefficients with R2 as subscript can be obtained by simply
interchanging subscripts 1 and 2. Note that symmetry has been
achieved by decomposing shear strains into two separate
components. Splitting shear strain into two constituent parts allows
distinct components for N12, N21,M12, andM21 to be retained while
allowing both physically meaningful stress components and
symmetry for our problem, noting that symmetry is retained via two
4 � 4 stiffness matrices rather than the conventional 3 � 3. As such,
our formulation is an alternative to that shown in [13–15,17].

F. Laminate Stiffness Matrix Corresponding to Nonlinear Strains

Similarly, it is possible to obtain the part of the constitutive
equations due to the nonlinear strains:
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8>>>>>><
>>>>>>:

N11

N12

N22

N21

9>>>>>>=
>>>>>>;

NL

� 1

4

A11 A12 A13

A21 A22 A23

A31 A32 A33

A41 A42 A43

2
66664

3
77775

�

8>>><
>>>:

1
2
�4e021 �4!02

1 � e025 ��022 � 2e05�02�
1
2
�4e022 �4!02

2 �e024 ��021 � 2e04�
0
1�

4!0
2e

0
1� 4!0

1e
0
2� e05e04�e05�01� e04�02� �01�02

9>>>=
>>>;

�1

4

�11 �12 �13

�21 �22 �23

�31 �32 �33

�41 �42 �43

2
66664

3
77775

�

8>>><
>>>:

4e01e
1
1�4!0

1!
1
1� e05�12��02�12

4e02e
1
2�4!0

2!
1
2�e04�11� �01�11

4�!1
2e

0
1�!0

2e
1
1�!1

1e
0
2�!0

1e
1
2�� �11�e05� �02�� �12�e04��01�

9>>>=
>>>;

�1

4

B11 B12 B13

B21 B22 B23

B31 B32 B33

B41 B42 B43

2
66664

3
77775

8>>><
>>>:

1
2
�4e121 �4!12

1 ��122 �
1
2
�4e122 �4!12

2 ��121 �
4!1

2e
1
1�4!1

1e
1
2� �11�12

9>>>=
>>>;

(26)

8>>>>>><
>>>>>>:

M11

M12

M22

M21

9>>>>>>=
>>>>>>;

NL

�1

4

�11 �12 �13

�21 �22 �23

�31 �32 �33

�41 �42 �43

2
66664

3
77775

�

8>>><
>>>:

1
2
�4e021 �4!02

1 � e025 ��022 � 2e05�02�
1
2
�4e022 �4!02

2 �e024 ��021 � 2e04�
0
1�

4!0
2e

0
1� 4!0

1e
0
2� e05e04�e05�01� e04�02� �01�02

9>>>=
>>>;

�1

4

B11 B12 B13

B21 B22 B23

B31 B32 B33

B41 B42 B43

2
66664

3
77775

�

8>>><
>>>:

4e01e
1
1�4!0

1!
1
1� e05�12��02�12

4e02e
1
2�4!0

2!
1
2�e04�11� �01�11

4�!1
2e

0
1�!0

2e
1
1�!1

1e
0
2�!0

1e
1
2�� �11�e05� �02�� �12�e04��01�

9>>>=
>>>;

�1

4

�11 �12 �13

�21 �22 �23

�31 �32 �33

�41 �42 �43

2
66664

3
77775

8>>><
>>>:

1
2
�4e121 �4!12

1 ��122 �
1
2
�4e122 �4!12

2 ��121 �
4!1

2e
1
1� 4!1

1e
1
2� �11�12

9>>>=
>>>;

(27)

and

(
Q22

Q11

)
NL

� Ks
2

E11 E12 E13 E14

E21 E22 E23 E24

" #
8>>>>><
>>>>>:

e02e
0
4 � e02�01

!0
2e

0
5 � !0

2�
0
2

e01e
0
5 � e01�02

!0
1e

0
4 � !0

1�
0
1

9>>>>>=
>>>>>;

� Ks
2

Z11 Z12 Z13 Z14

Z21 Z22 Z23 Z24

" #
8>>>>><
>>>>>:

e12e
0
4 � e02�11 � e12�01

!0
2�

1
2 � !1

2e
0
5 � !1

2�
0
2

e11e
0
5 � e01�12 � e11�02

!1
1e

0
4 � !0

1�
1
1 � !1

1�
0
1

9>>>>>=
>>>>>;

� Ks
2

H11 H12 H13 H14

H21 H22 H23 H24

" #
8>>>>><
>>>>>:

�e12�11
!1
2�

1
2

e11�
1
2

�!1
1�

1
1

9>>>>>=
>>>>>;

(28)

The coefficients of Eqs. (26–28), which are due to the nonlinear
part of the strains, are calculated using

A�

A11 A12 A13

A21 A22 A23

A31 A32 A33

A41 A42 A43

2
66664

3
77775

�
XN
k�1

�Q11a
NL
R1

�Q12d
NL
R2

�Q16d
NL
R1

�Q16a
NL
R1

�Q26d
NL
R2

�Q66d
NL
R1

�Q12d
NL
R1

�Q22a
NL
R2

�Q26d
NL
R2

�Q16d
NL
R1

�Q26a
NL
R2

�Q66d
NL
R2

2
666664

3
777775

�k�

(29)

B�

B11 B12 B13

B21 B22 B23

B31 B32 B33

B41 B42 B43

2
66664

3
77775

�
XN
k�1

�Q11c
NL
R1

�Q12f
NL
R2

�Q16f
NL
R1

�Q16c
NL
R1

�Q26f
NL
R2

�Q66f
NL
R1

�Q12f
NL
R1

�Q22c
NL
R2

�Q26f
NL
R2

�Q16f
NL
R1

�Q26c
NL
R2

�Q66f
NL
R2

2
666664

3
777775

�k�

(30)

��

�11 �12 �13

�21 �22 �23

�31 �32 �33

�41 �42 �43

2
664

3
775�X

N

k�1

�Q11b
NL
R1

�Q12e
NL
R2

�Q16e
NL
R1

�Q16b
NL
R1

�Q26e
NL
R2

�Q66e
NL
R1

�Q12e
NL
R1

�Q22b
NL
R2

�Q26e
NL
R2

�Q16e
NL
R1

�Q26b
NL
R2

�Q66e
NL
R2

2
6664

3
7775
�k�

(31)

��

�11 �12 �13

�21 �22 �23

�31 �32 �33

�41 �42 �43

2
66664

3
77775

�
XN
k�1

�Q11g
NL
R1

�Q12h
NL
R2

�Q16h
NL
R1

�Q16g
NL
R1

�Q26h
NL
R2

�Q66h
NL
R1

�Q12h
NL
R1

�Q22g
NL
R2

�Q26h
NL
R2

�Q16h
NL
R1

�Q26g
NL
R2

�Q66h
NL
R2

2
666664

3
777775

�k�

(32)
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E�
E11 E12 E13 E14

E21 E22 E23 E24

" #

�
XN
k�1

�Q44a
NL
R2

�Q44d
NL
R2

�Q45d
NL
R1

�Q45d
NL
R2

�Q45d
NL
R2

�Q45d
NL
R1

�Q55a
NL
R1

�Q55d
NL
R1

" #�k�
(33)

Z�
Z11 Z12 Z13 Z14

Z21 Z22 Z23 Z24

" #

�
XN
k�1

�Q44b
NL
R2

�Q44e
NL
R2

�Q45e
NL
R1

�Q45e
NL
R2

�Q45e
NL
R2

�Q45e
NL
R1

�Q55b
NL
R1

�Q55e
NL
R1

" #�k�
(34)

H�
H11 H12 H13 H14

H21 H22 H23 H24

" #

�
XN
k�1

�Q44c
NL
R2

�Q44f
NL
R2

�Q45f
NL
R1

�Q45f
NL
R2

�Q45f
NL
R2

�Q45f
NL
R1

�Q55c
NL
R1

�Q55f
NL
R1

" #�k�
(35)

where

aNLR1
�R

2
1

R2

�
ln
�
R1� �k�1
R1� �k

�
� �R2 �R1�

��k�1 � �k�
�R1� �k�1��R1� �k�

�

bNLR1
�R

2
1

R2

�
��k�1 � �k� � �R2 � 2R1� ln

�
R1� �k�1
R1� �k

�

�R1�R2 �R1�
��k�1 � �k�

�R1� �k�1��R1� �k�

�

cNLR1
�R

2
1

R2

�
1

2
��2k�1 � �2k� � �R2 � 2R1���k�1 � �k�

�R1�3R1 � 2R2� ln
�
R1� �k�1
R1� �k

�

�R2
1�R2 �R1�

��k�1 � �k�
�R1� �k�1��R1� �k�

�

dNLR1
�R1 ln

�
R1� �k�1
R1� �k

�

eNLR1
�R1

�
��k�1 � �k� �R1 ln

�
R1� �k�1
R1� �k

��

fNLR1
�R1

�
1

2
��2k�1 � �2k� �R1��k�1 � �k� �R2

1 ln
�
R1� �k�1
R1� �k

��

gNLR1
�R

2
1

R2

�
1

3
��3k�1 � �3k� �

�
R2

2
�R1

�
��2k�1 � �2k�

�R1�3R1 � 2R2���k�1 � �k� �R2
1�3R2 � 4R1� ln

�
R1� �k�1
R1� �k

�

�R3
1�R2 �R1�

��k�1 � �k�
�R1� �k�1��R1� �k�

�

hNLR1
�R1

�
1

3
��3k�1 � �3k� �

1

2
R1��2k�1 � �2k� �R2

1��k�1 � �k�

�R3
1 ln

�
R1� �k�1
R1� �k

��
(36)

III. Equations of Motion

The following six equations of equilibrium are widely accepted
[2–15]. They reflect the equilibrium of the middle surface when a
transverse load q is applied, and they are

@

@�1
�a2N11� �

@

@�2
�a1N21� � N22

@a2
@�1
� N12

@a1
@�2
� a1a2

R1

Q1

� a1a2
�
I0
@2u0
@t2
� I1

@2�1
@t2

�
@

@�1
�a2N12� �

@

@�2
�a1N22� � N11

@a1
@�2
� N21

@a2
@�1
� a1a2

R2

Q2

� a1a2
�
I0
@2v0
@t2
� I1

@2�2
@t2

�
@

@�1
�a2Q1� �

@

@�2
�a1Q2� � a1a2

�
N11

R1

� N22

R2

�
� qa1a2

� a1a2I0
@2w0

@t2

@

@�1
�a2M11� �

@

@�2
�a1M21� �M22

@a2
@�1
�M12

@a1
@�2
� a1a2Q1

� a1a2
�
I1
@2u0
@t2
� I2

@2�1
@t2

�
@

@�1
�a2M12� �

@

@�2
�a1M22� �M11

@a1
@�2
�M21

@a2
@�1
� a1a2Q2

� a1a2
�
I1
@2v0
@t2
� I2

@2�2
@t2

�
M21

R2

�M12

R1

� N21 � N12 � 0

(37)

The mass inertias I0, I1, and I2 are calculated using

Ii �
XN
k�1

Z
h=2

�h=2
��k�

�
1� �

R1

��
1� �

R2

�
�id� �i� 0; 1; 2� (38)

where � is the mass density.
Because of the definition of the stress resultants, the last

expression in Eq. (37), concerning drilling equilibrium, is identically
satisfied and, for this reason, is usually not considered in deriving the
differential equations relating displacements and applied loads. It is
noted that drilling equilibrium is always satisfied unless the flat-plate
approximation is assumed in the definition of the stress resultants. In
fact, in many previous theories in which the term 1� �=Ri is
approximated to unity, the definition of stress resultants does not
satisfy the sixth equilibrium equation.

In deriving the stress resultants, approximate expressions for the
displacement field have been used. It has been demonstrated that this
discrepancy leads to nonzero strain components (note, not strains)
and stress resultants corresponding to a small rigid-body rotation and
that Eq. (20) is thus in need of some modification [9,10,13,14].
Analytically, this is done by modifying the strain-displacement
relations in Eq. (20) by replacing those terms without tildes using the
following terms with tildes:

~!0
1 �

1

a1

�
@v0
@�1
� u0
a2

@a1
@�2

�
� �n

~!0
2 �

1

a2

�
@u0
@�2
� v0
a1

@a2
@�1

�
� �n

~!1
1 �

1

a1

�
@�2
@�1
� �1
a2

@a1
@�2

�
� �n
R1

~!1
2 �

1

a2

�
@�1
@�2
� �2
a1

@a2
@�1

�
� �n
R2

(39)

Here, the term �n is the third component of the curl of the shell’s
middle-surface displacement field; hence,

�n �
1

2a1a2

�
@

@�1
�a2v0� �

@

@�2
�a1u0�

�
(40)

The same correction does not apply to Eqs. (26–28). This reasoning
is understood by considering the work of Sanders [13], in which he
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imposed the displacement field, generated by a small rigid rotation,
on the structure. Because he was dealing with a linear theory and
small displacements, he could approximate the small rigid rotation
with a curl. In linear theories, this must result in zero strain
components, and thus the correction. In nonlinear theories, a curl
cannot be approximated to a rigid rotation. It actually entails some
deformations, and these deformations are analytically described by
the nonlinear strains in Eq. (16). The physical meaning of the latter
equation would be altered by applying the curl correction to
Eqs. (26–28).

IV. Numerical Results

One of the features on the present work is that the term 1� �=Ri
has been retained in the derivation of the shell model. This term is
typically neglected because, for the range of applicability of any shell
theory based on an approximation of the shell as a two-dimensional
structure, the quantity �=Ri is small if compared with unity.

In the following sections, examples of application of the
developed theory are presented. The expressions of the stiffnesses
are presented as functions of the geometry of the shell in its
orthogonal conjugate curvilinear system (i.e., of the normal radii of
curvature). These functions therefore represent a point-to-point
mapping between the structure’s idealized domain and stiffness. In
other words, they allow one to analytically calculate the exact
stiffnesses of a differential element within a structure.

It is later shown that even when the approximation �=Ri � 1
holds correctly, neglecting this term entails the loss of important
information. Indeed, the geometry of a shell structure can affect the
stiffness matrix by introducing coupling terms for even symmetric
laminates or isotropic materials. This effect is readily explained by
simplifying the expressions in Eq. (25). For instance, consider a
generic shell of thickness h and assume that the material is isotropic.
A series expansion of Eqs. (25) yields the following relationships:

aLR1

 aLR2


 h � 1

12

h3

R1

�
1

R2

� 1

R1

�

bLR1

 bLR2


 h
3

12

�
1

R2

� 1

R1

�
; eLR1


 1

12
h3

eLR2

 1

12
h3 � 1

80

h5

R2

�
1

R2

� 1

R1

�
(41)

Equations (41) give an idea of the order of magnitude of the
difference between classic lamination theory stiffnesses and those
herein presented, and they also show that this difference depends on
thickness, radii of curvature. and the sign of their product R1R2. By
comparing the latter expressions with the classic case (P.A.) inwhich

aLR1

 aLR2


 h; bLR1

 bLR2


 0; eLR1

 eLR2


 1
12
h3 (42)

it becomes clear that, with the notable exception of the sphere, there
is a small nonuniform relative difference for theAij andDij terms and
that the same difference, which is magnified for structures in which
R1R2 < 0, is larger inBij terms. Indeed, the latter differ from zero by
the order of Dij=Ri. For composite structures, these differences are
then expected to be of the same order of magnitude as those obtained
using Eqs. (41) and (42).

The bending-stretching matrix is nonzero, even for symmetrically
laminated structures, due to the inherent geometry. An important
general rule may be deduced from the expressions in Eqs. (41): that
is, the effect of the initial geometry on the elastic behavior of a curved
surface depends on its Gaussian curvature (GC). This quantity is
defined as the product of the principal curvatures and it is positive for
synclastic surfaces (e.g., elliptic paraboloids), zero for developable
or ruled surfaces (e.g., cylinders or cones) and negative for anticlastic
surfaces (e.g., hyperbolic paraboloids). For structures with different
geometries and identical thicknesses and lamination, the magnitude
of the elements of the bending-stretching matrix increases for
decreasing GC. In summary, from Eq. (41),

GC> 0) Bij � O
�
h3

jR2j
� h3

jR1j

�

GC� 0) Bij � O
�
h3

jR2j

�

GC < 0) Bij � O
�
h3

jR2j
� h3

jR1j

�
(43)

.
Interestingly, the significance of the Bij terms depends only on

geometry, via GC, and not on material stiffness properties. As such,
the effect of curvature on Bij is completely captured by GC, noting
that the largest effects occur for anticlastic geometries, such as the
hyperbolic paraboloid (negative GC), and the smallest effects occur
for synclastic curvatures (positive GC), with zero effect for spheres.
Curvature effects on Bij for cylindrical shells are intermediate
between the two previous examples, as may be expected, due to their
zero GC value.

In the following sections, stiffness matrices resulting from
Eqs. (21–24) are compared with the equivalent P.A. matrices, as in
[10]. Results for synclastic, developable, and anticlastic surfaces are
shown with the aim of showing both the order of magnitude of the
difference and the relationship between the difference and the
Gaussian curvature.

The material properties used in the following examples are
E1 � 206:8 GPa, E2 � 20:7 GPa, 	12 � 0:25, G12 �G13�
10:3 GPa, and G23 � 4:1 GPa. Two different layups with stacking
sequences � 45 30 90 0 	S and � 904 04 	T are considered.All of
the structures have been chosen to have thickness h� 0:01 m and
thickness-to-radius ratios equal to 0.1 and less than 0.1, respectively.

For a useful comparison note that literature for shells having the
aforementioned features considers N12 � N21,M12 �M21,8>><
>>:
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9>>=
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In the following, a series of tables shows a comparison between
stiffness coefficients multiplying the same component of strain.

A. Elliptic Paraboloid

In Tables 1–6, the stiffness coefficients of an elliptic paraboloid
are presented. They correspond to the point on the top of the structure
that has been defined to have R1 � 1=10 m and R2 � 1=15 m.

Notably, the following relationships hold:

B AE�R1; R2� �
B11 B016 0 0
B016 B066 0 0
0 0 B22 B0026
0 0 B0026 B0066

2
64

3
75

BPA �
B11 B12 B16

B12 B22 B26

B16 B26 B66

2
4

3
5� 0 0 0

0 0 0

0 0 0

2
4

3
5

(46)
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Table 1 Stiffness Aij parameters for � 45 30 90 0 �S laminated elliptic paraboloid at its peak

Plate approximation Present equations

�i; j� Aij, GN=m Aij, GN=m A0ij, GN=m A00ij, GN=m Error %

�1; 1� 1.0681 1.0683 N/A N/A 0.02
�2; 2� 0.8339 0.8338 N/A N/A �0:01
�1; 6� 0.2664 N/A 0.2666 N/A 0.08
�6; 6� 0.2972 N/A 0.2973 N/A 0.03
�2; 6� 0.1705 N/A N/A 0.1705 <0:01
�6; 6� 0.2972 N/A N/A 0.2972 <0:01
�4; 4� 0.0685 0.0685 N/A N/A <0:01
�5; 5� 0.0763 0.0763 N/A N/A <0:01

Table 2 Stiffness Bij parameters for � 45 30 90 0 �S laminated elliptic paraboloid at its peak

Plate approximation Present equations

�i; j� 10�5 � Bij, GN 10�5 � Bij, GN 10�5 � B0ij, GN 10�5 � B00ij, GN Error %

�1; 1� 0.00 �2:3373 N/A N/A N/A
�2; 2� 0.00 2.0690 N/A N/A N/A
�1; 6� 0.00 N/A �1:2462 N/A N/A
�6; 6� 0.00 N/A �1:2744 N/A N/A
�2; 6� 0.00 N/A N/A 0.9299 N/A
�6; 6� 0.00 N/A N/A 1.2746 N/A

Table 3 StiffnessDij parameters for � 45 30 90 0 �S laminated elliptic paraboloid at its peak

Plate approximation Present equations

�i; j� 10�6 �Dij, GN �m 10�6 �Dij, GN �m 10�6 �D0ij, GN �m 10�6 �D00ij, GN �m Error %

�1; 1� 7.0109 7.0112 N/A N/A <0:01
�2; 2� 6.1571 6.1322 N/A N/A �0:40
�1; 6� 3.7342 N/A 3.7357 N/A 0.04
�6; 6� 3.8178 N/A 3.8195 N/A 0.04
�2; 6� 2.7851 N/A N/A 2.7828 �0:08
�6; 6� 3.8178 N/A N/A 3.8147 �0:08

Table 4 Stiffness Aij parameters for � 904 04 �T laminated elliptic paraboloid at its peak

Plate approximation Present equations

�i; j� Aij, GN=m Aij, GN=m A0ij, GN=m A00ij, GN=m Error %

�1; 1� 1.1448 1.1373 N/A N/A �0:66
�2; 2� 1.1448 1.1368 N/A N/A �0:70
�1; 6� 0.00 N/A 0.00 N/A 0.00
�6; 6� 0.1034 N/A 0.1035 N/A 0.10
�2; 6� 0.00 N/A N/A 0.00 0.00
�6; 6� 0.1034 N/A N/A 0.1034 <0:01
�4; 4� 0.0724 0.0721 N/A N/A �0:41
�5; 5� 0.0724 0.0722 N/A N/A �0:28

Table 5 Stiffness Bij parameters for � 904 04 �T laminated elliptic paraboloid at its top

Plate approximation Present equations

�i; j� 10�3 � Bij, GN 10�3 � Bij, GN 10�3 � B0ij, GN 10�3 � B00ij, GN Error %

�1; 1� 2.3416 2.3107 N/A N/A �1:32
�2; 2� �2:3416 �2:3090 N/A N/A �1:39
�1; 6� 0.00 N/A 0.00 N/A 0.00
�6; 6� 0.00 N/A �0:0028 N/A N/A
�2; 6� 0.00 N/A N/A 0.00 0.00
�6; 6� 0.00 N/A N/A 0.0028 N/A
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As expected, the difference between the new and classicBij elements
in Eqs. (46) is of the order ofDij=Ri and, as shown by the b

L
Ri
terms in

Eq. (37), is proportional to h�1=R2 � 1=R1�. Because of this
proportionality, the coupling follows the trend shown in Fig. 1. It is
also interesting to highlight that the effects of the curvature on the
stiffness matrices are remarkably larger for the unsymmetric layup.
These effects are also observed in the following examples
concerning a cylinder and a hyperbolic paraboloid and appear to be a
general feature.

B. Cylindrical Shell

Tables 7–12 refer to a cylindrical structure. The radii of curvature
are constant through the domain so that 1=R2 � 10 m�1 and
1=R1 � 0 m�1. The relationship between the stiffnesses and
Gaussian curvature is clearly shown in Tables 1–18. The errors are
indeed progressively larger as GC decreases. As already mentioned,
this feature is magnified for unsymmetric stacking sequences.

C. Hyperbolic Paraboloid

In Tables 13–18, the stiffness coefficients of a hyperbolic
paraboloid are presented. They correspond to the saddle point of the
structure that has been taken to have 1=R1 ��10 m�1 and
1=R2 � 10 m�1. The distribution of Bij terms follows the trend
shown in Fig. 2 and shows significant values, with their maximum
occurring at the center of the structure.

V. Geometrically Exact Strain Components

Tables 19–28 show a comparison between the components of
strain obtained using the present formulation [present equations
(P.E.)] and those valid for plates and commonly used for shells
(P.A.). The effect of accurately calculated stiffness coefficients on
free vibrations has been investigated in [4]. The main focus here is to
show that the same approach may have relevant influences on the
nonlinear behavior of shell structures. In fact, it is shown that even
the slightest difference in the stiffnessmatrixmay lead to appreciably
different components of strain. This is shown by applying unitary
stress resultants to the structural points of the symmetric laminate,

Fig. 1 Trend of h�1=R2 � 1=R1� over a quarter of elliptic paraboloid.

Table 6 Stiffness Dij parameters for � 904 04 �T laminated elliptic paraboloid at its top

Plate approximation Present equations

�i; j� 10�6 �Dij, GN �m 10�6 �Dij, GN �m 10�6 �D0ij, GN �m 10�6 �D00ij, GN �m Error %

�1; 1� 9.5399 9.4470 N/A N/A �0:97
�2; 2� 9.5399 9.4167 N/A N/A �1:29
�1; 6� 0.00 N/A 0.00 N/A 0.00
�6; 6� 0.8618 N/A 0.8621 N/A 0.03
�2; 6� 0.00 N/A N/A 0.00 0.00
�6; 6� 0.8618 N/A N/A 0.8604 �0:16

Table 7 Stiffness Aij parameters for � 45 30 90 0 �S laminated cylinder (1=R� 0:1)

Plate approximation Present equations

�i; j� Aij, GN=m Aij, GN=m A0ij, GN=m A00ij, GN=m Error %

�1; 1� 1.0681 1.0681 N/A N/A 0.00
�2; 2� 0.8339 0.8345 N/A N/A 0.07
�1; 6� 0.2664 N/A 0.2664 N/A 0.00
�6; 6� 0.2972 N/A 0.2972 N/A 0.00
�2; 6� 0.1705 N/A N/A 0.1708 0.18
�6; 6� 0.2972 N/A N/A 0.2976 0.13
�4; 4� 0.0685 0.0686 N/A N/A 0.15
�5; 5� 0.0763 0.0763 N/A N/A 0.00

Table 8 Stiffness Bij parameters for � 45 30 90 0 �S laminated cylinder (1=R� 0:1)

Plate approximation Present equations

�i; j� 10�5 � Bij, GN 10�5 � Bij, GN 10�5 � B0ij, GN 10�5 � B00ij, GN Error %

�1; 1� 0.00 7.0109 N/A N/A N/A
�2; 2� 0.00 �6:1655 N/A N/A N/A
�1; 6� 0.00 N/A 3.7342 N/A N/A
�6; 6� 0.00 N/A 3.8178 N/A N/A
�2; 6� 0.00 N/A N/A �2:7901 N/A
�6; 6� 0.00 N/A N/A �3:8241 N/A
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Table 9 Stiffness Dij parameters for � 45 30 90 0 �S laminated cylinder (1=R� 0:1)

Plate approximation Present equations

�i; j� 10�6 �Dij, GN �m 10�6 �Dij, GN �m 10�6 �D0ij, GN �m 10�6 �D00ij, GN �m Error %

�1; 1� 7.0109 7.0109 N/A N/A 0.00
�2; 2� 6.1571 6.1655 N/A N/A 0.14
�1; 6� 3.7342 N/A 3.7342 N/A 0.00
�6; 6� 3.8178 N/A 3.8178 N/A 0.00
�2; 6� 2.7851 N/A N/A 2.7901 0.18
�6; 6� 3.8178 N/A N/A 3.8241 0.17

Table 10 Stiffness Aij parameters for � 904 04 �T laminated cylinder (1=R� 0:1)

Plate approximation Present equations

�i; j� Aij, GN=m Aij, GN=m A0ij, GN=m A00ij, GN=m Error %

�1; 1� 1.1448 1.1682 N/A N/A 2.04
�2; 2� 1.1448 1.1692 N/A N/A 2.13
�1; 6� 0.00 N/A 0.00 N/A 0.00
�6; 6� 0.1034 N/A 0.1034 N/A 0.00
�2; 6� 0.00 N/A N/A 0.00 0.00
�6; 6� 0.1034 N/A N/A 0.1035 0.10
�4; 4� 0.0724 0.0732 N/A N/A 1.10
�5; 5� 0.0724 0.0732 N/A N/A 1.10

Table 11 Stiffness Bij parameters for � 904 04 �T laminated cylinder �1=R� 0:1�

Plate approximation Present equations

�i; j� 10�3 � Bij, GN 10�3 � Bij, GN 10�3 � B0ij, GN 10�3 � B00ij, GN Error %

�1; 1� 2.3416 2.4370 N/A N/A 4.07
�2; 2� �2:3416 �2:4401 N/A N/A 4.21
�1; 6� 0.00 N/A 0.00 N/A 0.00
�6; 6� 0.00 N/A 0.0086 N/A N/A
�2; 6� 0.00 N/A N/A 0.00 0.00
�6; 6� 0.00 N/A N/A �0:0086 N/A

Table 12 Stiffness Dij parameters for � 904 04 �T laminated cylinder �1=R� 0:1�

Plate approximation Present equations

�i; j� 10�6 �Dij, GN �m 10�6 �Dij, GN �m 10�6 �D0ij, GN �m 10�6 �D00ij, GN �m Error %

�1; 1� 9.5399 9.8326 N/A N/A 3.07
�2; 2� 9.5399 9.8474 N/A N/A 3.22
�1; 6� 0.00 N/A 0.00 N/A 0.00
�6; 6� 0.8618 N/A 0.8618 N/A 0.00
�2; 6� 0.00 N/A N/A 0.00 0.00
�6; 6� 0.8618 N/A N/A 0.8631 0.15

Table 13 Stiffness Aij parameters for � 45 30 90 0 �S laminated hyperbolic paraboloid at its saddle point

Plate approximation Present equations

�i; j� Aij, GN=m Aij, GN=m A0ij, GN=m A00ij, GN=m Error %

�1; 1� 1.0681 1.0695 N/A N/A 0.13
�2; 2� 0.8339 0.8351 N/A N/A 0.14
�1; 6� 0.2664 N/A 0.2672 N/A 0.30
�6; 6� 0.2972 N/A 0.2980 N/A 0.27
�2; 6� 0.1705 N/A N/A 0.1711 0.35
�6; 6� 0.2972 N/A N/A 0.2980 0.27
�4; 4� 0.0685 0.0686 N/A N/A 0.15
�5; 5� 0.0763 0.0764 N/A N/A 0.13
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Table 14 Stiffness Bij parameters for � 45 30 90 0 �S laminated hyperbolic paraboloid at its saddle point

Plate approximation Present equations

�i; j� 10�4 � Bij, GN 10�4 � Bij, GN 10�4 � B0ij, GN 10�4 � B00ij, GN Error %

�1; 1� 0.00 1.4043 N/A N/A N/A
�2; 2� 0.00 �1:2334 N/A N/A N/A
�1; 6� 0.00 N/A 0.7480 N/A N/A
�6; 6� 0.00 N/A 0.7648 N/A N/A
�2; 6� 0.00 N/A N/A �0:5580 N/A
�6; 6� 0.00 N/A N/A �0:7647 N/A

Table 15 Stiffness Dij parameters for � 45 30 90 0 �S laminated hyperbolic paraboloid at its saddle point

Plate approximation Present equations

�i; j� 10�6 �Dij, GN �m 10�6 �Dij, GN �m 10�6 � D0ij, GN �m 10�6 �D00ij, GN �m Error %

�1; 1� 7.0109 7.0315 N/A N/A 0.29
�2; 2� 6.1571 6.1771 N/A N/A 0.32
�1; 6� 3.7342 N/A 3.7456 N/A 0.31
�6; 6� 3.8178 N/A 3.8302 N/A 0.32
�2; 6� 2.7851 N/A N/A 2.7952 0.36
�6; 6� 3.8178 N/A N/A 3.8291 0.30

Table 16 StiffnessAij parameters for � 904 04 �T laminatedhyperbolic paraboloid at its saddle point

Plate approximation Present equations

�i; j� Aij, GN=m Aij, GN=m A0ij, GN=m A00ij, GN=m Error %

�1; 1� 1.1448 1.1936 N/A N/A 4.26
�2; 2� 1.1448 1.1936 N/A N/A 4.26
�1; 6� 0.00 N/A 0.00 N/A 0.00
�6; 6� 0.1034 N/A 0.1036 N/A 0.19
�2; 6� 0.00 N/A N/A 0.00 0.00
�6; 6� 0.1034 N/A N/A 0.1036 0.19
�4; 4� 0.0724 0.0741 N/A N/A 2.35
�5; 5� 0.0724 0.0741 N/A N/A 2.35

Table 17 StiffnessBij parameters for � 904 04 �T laminatedhyperbolic paraboloid at its saddle point

Plate approximation Present equations

�i; j� 10�3 � Bij, GN 10�3 � Bij, GN 10�3 � B0ij, GN 10�3 � B00ij, GN Error %

�1; 1� 2.3416 2.5386 N/A N/A 8.41
�2; 2� �2:3416 �2:5386 N/A N/A 8.41
�1; 6� 0.00 N/A 0.00 N/A 0.00
�6; 6� 0.00 N/A 0.0172 N/A N/A
�2; 6� 0.00 N/A N/A 0.00 0.00
�6; 6� 0.00 N/A N/A �0:0172 N/A

Table 18 Stiffness Dij parameters for � 904 04 �T laminated hyperbolic paraboloid at its saddle point

Plate approximation Present equations

�i; j� 10�6 �Dij, GN �m 10�6 �Dij, GN �m 10�6 �D0ij, GN �m 10�6 �D00ij, GN �m Error %

�1; 1� 9.5399 10.1560 N/A N/A 6.46
�2; 2� 9.5399 10.1381 N/A N/A 6.27
�1; 6� 0.00 N/A 0.00 N/A 0.00
�6; 6� 0.8618 N/A 0.8645 N/A 0.31
�2; 6� 0.00 N/A N/A 0.00 0.00
�6; 6� 0.8618 N/A N/A 0.8638 0.23

778 PIRRERA AND WEAVER



used in the previous sections, and calculating the resulting
deformations by inverting Eq. (20).

Data in Tables 25 and 26 include effects of combined stretching-
bending. The large discrepancies are explained in terms of orders of

magnitude effects by using the same assumptions that led to Eqs. (41)
and (42). The following expressions are obtained by inverting
Eq. (20) and applying loads as in Tables 25 and 26. In fact, one can
show that the errors are proportional to

�1=R2� � �1=R1�
f1 � �h2=12���1=R2� � �1=R1�	2g

�
h2

12

�
1

R2

� 1

R1

�
� 1

�
� O�103�% (47)

and

�h2=12���1=R2� � �1=R1�	
f1 � �h2=12���1=R2� � �1=R1�	2g

��
1

R2

� 1

R1

�
� 1

�
� O�10�2�%

(48)

for in-plane and out-of-plane components of deformation,
respectively. The order of magnitude of the error for the in-plane
components of strain is thus explained. It is due to the presence of a
populated coupling matrix and obviously tends to zero when the
principal curvatures tend to infinity.

The data in Table 28 are particularly interesting because they
present a loading condition that cannot be reproduced by assuming
the plate approximation. In that case, the artificially achieved

Table 19 Strain components for � 45 30 90 0 �S laminate

Applied load N11 � 1 N=m, Q11 � 1 N=m

Paraboloid Cylinder Hyperboloid

10�9 � P:A: 10�9 � P:E: Error % 10�9 � P:E: Error % 10�9 � P:E: Error %

e01 1.2232 1.229 0.47 1.2297 0.53 1.2302 0.57
e02 �0:1545 �0:1387 �10:21 �0:1386 �10:26 �0:1385 �10:35

!0
1 � !0

2 �1:0079 �0:7595 �24:65 �0:7595 �24:64 �0:7596 �24:63
e04 �2:8853 �2:885 �0:01 �2:8827 �0:09 �2:8753 �0:35
e05 13.6583 13.6545 �0:03 13.6578 <0:01 13.6343 �0:18
e11 0 4.3098 N/A �12:381 N/A �24:9202 N/A
e12 0 �0:3541 N/A 0.426 N/A 1.0613 N/A

!1
1 � !1

2 0 �4:6293 N/A 3.5694 N/A 10.5564 N/A

Table 20 Strain components for � 45 30 90 0 �S laminate

Applied load N22 � 1 N=m, Q22 � 1 N=m

Paraboloid Cylinder Hyperboloid

10�9 � P:A: 10�9 � P:E: Error % 10�9 � P:E: Error % 10�9 � P:E: Error %

e01 �0:1545 �0:1387 �10:21 �0:1386 �10:26 �0:1385 �10:35
e02 1.3781 1.4204 3.07 1.4202 3.05 1.4218 3.17

!0
1 � !0

2 �0:6522 0.0101 �101:55 0.0103 �101:59 0.0098 �101:5
e04 15.2045 15.2074 0.02 15.1909 �0:09 15.1762 �0:19
e05 �2:8853 �2:885 �0:01 �2:8827 �0:09 �2:8753 �0:35
e11 0 0.9414 N/A �1:375 N/A �3:2243 N/A
e12 0 �5:2142 N/A 13.9371 N/A 28.4382 N/A

!1
1 � !1

2 0 �6:6581 N/A �7:5181 N/A �5:8672 N/A

Table 21 Strain components for � 45 30 90 0 �S laminate

Applied load N11 � 1 N=m, N22 � 1 N=m

Paraboloid Cylinder Hyperboloid

10�9 � P:A: 10�9 � P:E: Error % 10�9 � P:E: Error % 10�9 � P:E: Error %

e01 1.0687 1.0903 2.02 1.091 2.09 1.0917 2.15
e02 1.2236 1.2817 4.75 1.2815 4.74 1.2833 4.88

!0
1 � !0

2 �1:66 �0:7494 �54:86 �0:7492 �54:87 �0:7498 �54:83
e11 0 5.2512 N/A �13:7561 N/A �28:1445 N/A
e12 0 �5:5683 N/A 14.3632 N/A 29.4995 N/A

!1
1 � !1

2 0 �11:2873 N/A �3:9488 N/A 4.6892 N/A

Fig. 2 Trend of h�1=R2 � 1=R1� over a hyperbolic paraboloid.
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Table 22 Strain components for � 45 30 90 0 �S laminate

Applied loadM11 � 1 N

Paraboloid Cylinder Hyperboloid

10�6 � P:A: 10�6 � P:E: Error % 10�6 � P:E: Error % 10�6 � P:E: Error %

e01 0 0.0043 N/A �0:0124 N/A �0:0249 N/A
e02 0 0.0009 N/A �0:0014 N/A �0:0032 N/A

!0
1 � !0

2 0 0.0045 N/A 0.0094 N/A 0.0112 N/A
e11 307.5838 307.467 �0:04 307.7032 0.04 307.2542 �0:11
e12 �49:6147 �49:615 <0:01 �49:5925 �0:04 �49:5103 �0:21

!1
1 � !1

2 �264:6526 �264:6258 �0:01 �264:7113 0.02 �264:163 �0:18

Table 23 Strain components for � 45 30 90 0 �S laminate

Applied loadM22 � 1 N

Paraboloid Cylinder Hyperboloid

10�6 � P:A: 10�6 � P:E: Error % 10�6 � P:E: Error % 10�6 � P:E: Error %

e01 0 �0:0004 N/A 0.0004 N/A 0.0011 N/A
e02 0 �0:0052 N/A 0.0139 N/A 0.0284 N/A

!0
1 � !0

2 0 �0:0059 N/A �0:0091 N/A �0:0092 N/A
e11 �49:6147 �49:615 <0:01 �49:5925 �0:04 �49:5103 �0:21
e12 250.4062 250.4879 0.03 250.2728 �0:05 250.4132 <0:01

!1
1 � !1

2 �134:1468 �134:0989 �0:04 �134:03 �0:9 �134:0839 �0:05

Table 24 Strain components for � 45 30 90 0 �S laminate

Applied loadM11 � 1 N,M22 � 1 N

Paraboloid Cylinder Hyperboloid

10�6 � P:A: 10�6 � P:E: Error % 10�6 � P:E: Error % 10�6 � P:E: Error %

e01 0 0.004 N/A �0:012 N/A �0:0239 N/A
e02 0 �0:0043 N/A 0.0126 N/A 0.0252 N/A

!0
1 � !0

2 0 �0:0014 N/A 0.0003 N/A 0.0019 N/A
e11 257.9691 257.852 �0:05 258.1106 0.05 257.7439 �0:09
e12 200.7915 200.8729 0.04 200.6803 �0:06 200.9029 0.06

!1
1 � !1

2 �398:7993 �398:7246 �0:02 �398:7413 �0:01 �398:2469 �0:14

Table 25 Strain components for � 45 30 90 0 �S laminate

Applied load N11 � 1 N=m,M11 � 1 N

Paraboloid Cylinder Hyperboloid

10�6 � P:A: 10�6 � P:E: Error % 10�6 � P:E: Error % 10�6 � P:E: Error %

e01 0.0012 0.0055 352.8 �0:0112 �1011:63 �0:0237 �2036:67
e02 �0:0002 0.0008 �619:53 �0:0015 879.75 �0:0034 2076.64

!0
1 � !0

2 �0:001 0.0037 �468:14 0.0086 �956:33 0.0104 �1132:13
e11 307.5838 307.4713 �0:04 307.6908 0.03 307.2293 �0:12
e12 �49:6147 �49:6153 <0:01 �49:5921 �0:05 �49:5092 �0:21

!1
1 � !1

2 �264:6526 �264:6304 �0:01 �264:7078 0.02 �264:1524 �0:19

Table 26 Strain components for � 45 30 90 0 �S laminate

Applied load N22 � 1 N=m,M22 � 1 N

Paraboloid Cylinder Hyperboloid

10�6 � P:A: 10�6 � P:E: Error % 10�6 � P:E: Error % 10�6 � P:E: Error %

e01 �0:0002 �0:0005 219.01 0.0003 �286:02 0.0009 �697:31
e02 0.0014 �0:0038 �375:3 0.0154 1014.41 0.0299 2066.81

!0
1 � !0

2 �0:0007 �0:0058 796.08 �0:009 1287.63 �0:0092 1315.73
e11 �49:6147 �49:614 <0:01 �49:5939 �0:04 �49:5135 �0:2
e12 250.4062 250.4827 0.03 250.2867 �0:05 250.4416 0.01

!1
1 � !1

2 �134:1468 �134:1055 �0:03 �134:0375 �0:08 �134:0898 �0:04
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symmetry of the stress resultants implies M12 �M21. However,
Eq. (13) is more appropriate and ifN12 � N21 � 0 andM12 � 1, then
M21 � R2=R1.

It is noted that due to Eq. (13), the stiffness matrix of Eq. (20) is
singular and cannot be inverted as is. This problem is easily
overcome, because by using Eq. (13) and by noting that ~!0

1 is equal to
~!0
2, due to Eq. (40), it is possible to reduce the 10 by 10 singular

stiffness matrix to a 9 by 9 for which the determinant is nonzero.

VI. Conclusions

General equations of multilayered anisotropic shells were
developed by including the effects of shear deformation, initial
curvature, and geometrically nonlinear deformation effects. A novel
expression for the stiffness matrix has been presented in which the
relationship between the shell shape and the stiffness coefficients has
been made explicit.

It is noted that the linear part of the developed model is in good
agreement with results from [4]; themodel has been further extended
to include the effects of geometrically nonlinear deformations and to
take into account and solve the most common theoretical
inconsistencies of previous formulations. Precisely, retaining the
coefficient 1� �=Ri in the definition of stress resultants has made it
possible to satisfy the equation of drilling equilibrium. Also, because
it is based on the work by Reddy [9,10], the present model does not
give nonphysical strain and stress resultants due to rigid-body
motion.

The role of geometry (initial curvatures) as a source of anisotropy
has been analyzed. It has been shown that the effect of curvature
significantly affects the bending-stretching matrix and that its
magnitude depends on the sign of the Gaussian curvature and on the
degree of symmetry of lamination. Generally, each element of the
stiffness matrix partially depends on the thickness/local radius of
curvature ratio and on the Gaussian curvature.

The stiffness coefficients presented herein differ from those
obtained with the plate approximation, giving errors up to 5–8% for
values of thickness-to-radius ratios of the order of 0.1. It is shown that
neglecting curvature effects may lead to variations of the strain
components from a few to several dozens of percentage points. It is
noted that such a difference may significantly affect buckling and
postbuckling phenomena.
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